6,256 research outputs found

    Second order statistics of NLOS indoor MIMO channels based on 5.2 GHz measurements

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    Energy flows in vibrated granular media

    Full text link
    We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the rate of energy input is the weight of the granular material times an average vibration velocity times a function of the ratio of particle to vibration velocity. `Particle-wall' dissipation has been neglected in all theories up to now, but can play an important role when the granular material is dilute. The ratio between gravitational potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments have shown that E ~ V^delta, with delta=2 for dilute granular material, and delta ~ 1.5 for dense granular material. We relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR

    X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables

    Full text link
    Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ~8% for systems with high accretion rates and low white-dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA

    Two-dimensional Burgers Cellular Automaton

    Full text link
    A two-dimensional cellular automaton(CA) associated with a two-dimensional Burgers equation is presented. The 2D Burgers equation is an integrable generalization of the well-known Burgers equation, and is transformed into a 2D diffusion equation by the Cole-Hopf transformation. The CA is derived from the 2D Burgers equation by using the ultradiscrete method, which can transform dependent variables into discrete ones. Some exact solutions of the CA, such as shock wave solutions, are studied in detail.Comment: Latex2.09, 17 pages including 7 figure

    Inelastic Collapse of Three Particles

    Full text link
    A system of three particles undergoing inelastic collisions in arbitrary spatial dimensions is studied with the aim of establishing the domain of ``inelastic collapse''---an infinite number of collisions which take place in a finite time. Analytic and simulation results show that for a sufficiently small restitution coefficient, 0r<7430.0720\leq r<7-4\sqrt{3}\approx 0.072, collapse can occur. In one dimension, such a collapse is stable against small perturbations within this entire range. In higher dimensions, the collapse can be stable against small variations of initial conditions, within a smaller rr range, 0r<9450.0560\leq r<9-4\sqrt{5}\approx 0.056.Comment: 6 pages, figures on request, accepted by PR

    Generational Equity, Generational Interdependence, and the Framing of the Debate Over Social Security Reform

    Get PDF
    This article analyzes the differences between the generational equity and generational interdependence conceptual packages used to frame arguments in the debate over policies such as Social Security reform. It begins with a history of the generational equity debate. This is followed by an analysis of the assumptions, values, and beliefs that inform each of these two ideological frames. It presents an analysis of why the generational equity frame has dominated the debate and highlights some of the limitations of this perspective

    Thermal convection in fluidized granular systems

    Full text link
    Thermal convection is observed in molecular dynamic simulation of a fluidized granular system of nearly elastic hard disks moving under gravity, inside a rectangular box. Boundaries introduce no shearing or time dependence, but the energy injection comes from a slip (shear-free) thermalizing base. The top wall is perfectly elastic and lateral boundaries are either elastic or periodic. The observed convection comes from the effect of gravity and the spontaneous granular temperature gradient that the system dynamically develops.Comment: 4 pages, 5 figure
    corecore