7,178 research outputs found
Mechanical Feedback from Active Galactic Nuclei in Galaxies, Groups, and Clusters
The radiative cooling timescales at the centers of hot atmospheres
surrounding elliptical galaxies, groups, and clusters are much shorter than
their ages. Therefore, hot atmospheres are expected to cool and to form stars.
Cold gas and star formation are observed in central cluster galaxies but at
levels below those expected from an unimpeded cooling flow. X-ray observations
have shown that wholesale cooling is being offset by mechanical heating from
radio active galactic nuclei. Feedback is widely considered to be an important
and perhaps unavoidable consequence of the evolution of galaxies and
supermassive black holes. We show that cooling X-ray atmospheres and the
ensuing star formation and nuclear activity are probably coupled to a
self-regulated feedback loop. While the energetics are now reasonably well
understood, other aspects of feedback are not. We highlight the problems of
atmospheric heating and transport processes, accretion, and nuclear activity,
and we discuss the potential role of black hole spin. We discuss X-ray imagery
showing that the chemical elements produced by central galaxies are being
dispersed on large scales by outflows launched from the vicinity of
supermassive black holes. Finally, we comment on the growing evidence for
mechanical heating of distant cluster atmospheres by radio jets and its
potential consequences for the excess entropy in hot halos and a possible
decline in the number of distant cooling flows.Comment: Accepted for publication in New Journal of Physics Focus Issue on
Clusters of Galaxie
Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies
We present a study of 107 galaxies, groups, and clusters spanning ~3 orders
of magnitude in mass, ~5 orders of magnitude in central galaxy star formation
rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the
intracluster medium (ICM), and ~5 orders of magnitude in the central black hole
accretion rate. For each system in this sample, we measure dM/dt using archival
Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by
combining over 330 estimates from dozens of literature sources. With these
data, we estimate the efficiency with which the ICM cools and forms stars,
finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30
Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation
greater than unity, suggesting that the systems with the strongest cool cores
are also cooling more efficiently. We propose that this may be related to, on
average, higher black hole accretion rates in the strongest cool cores, which
could influence the total amount (saturating near the Eddington rate) and
dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt <
30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this
is consistent with star formation being fueled at a low (but dominant) level by
recycled ISM gas in these systems. We find an intrinsic log-normal scatter in
SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly
self-regulated over very long timescales, but can vary dramatically on short
timescales. There is weak evidence that this scatter may be related to the
feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for
which the mechanical feedback power is within a factor of two of the cooling
luminosity.Comment: 16 pages, 10 figures, 6 tables. Submitted to ApJ. Comments welcome
Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: a Topical Perspective
Most galaxies comparable to or larger than the mass of the Milky Way host
hot, X-ray emitting atmospheres, and many such galaxies are radio sources. Hot
atmospheres and radio jets and lobes are the ingredients of radio-mechanical
active galactic nucleus (AGN) feedback. While a consensus has emerged that such
feedback suppresses cooling of hot cluster atmospheres, less attention has been
paid to massive galaxies where similar mechanisms are at play. Observation
indicates that the atmospheres of elliptical and S0 galaxies were accreted
externally during the process of galaxy assembly and augmented significantly by
stellar mass loss. Their atmospheres have entropy and cooling time profiles
that are remarkably similar to those of central cluster galaxies. About half
display filamentary or disky nebulae of cool and cold gas, much of which has
likely cooled from the hot atmospheres. We review the observational and
theoretical perspectives on thermal instabilities in galactic atmospheres and
the evidence that AGN heating is able to roughly balance the atmospheric
cooling. Such heating and cooling may be regulating star formation in all
massive spheroids at late times.Comment: Final versio
- …