8,045 research outputs found

    A locally adaptive time-stepping algorithm for\ud petroleum reservoir simulations

    Get PDF
    An algorithm for locally adapting the step-size for large scale finite volume simulations of multi-phase flow in petroleum reservoirs is suggested which allows for an “all-in-one” implicit calculation of behaviour over a very large time scale. Some numerical results for simple two-phase flow in one space dimension illustrate the promise of the algorithm, which has also been applied to very simple 3D cases. A description of the algorithm is presented here along with early results. Further development of the technique is hoped to facilitate useful scaling properties

    Patterns and Long Range Correlations in Idealized Granular Flows

    Get PDF
    An initially homogeneous freely evolving fluid of inelastic hard spheres develops inhomogeneities in the flow field (vortices) and in the density field (clusters), driven by unstable fluctuations. Their spatial correlations, as measured in molecular dynamics simulations, exhibit long range correlations; the mean vortex diameter grows as the square root of time; there occur transitions to macroscopic shearing states, etc. The Cahn--Hilliard theory of spinodal decomposition offers a qualitative understanding and quantitative estimates of the observed phenomena. When intrinsic length scales are of the order of the system size, effects of physical boundaries and periodic boundaries (finite size effects in simulations) are important.Comment: 13 pages with 7 postscript figures, LaTeX (uses psfig). Submitted to International Journal of Modern Physics

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    Sand as Maxwell's demon

    Full text link
    We consider a dilute gas of granular material inside a box, kept in a stationary state by shaking. A wall separates the box into two identical compartments, save for a small hole at some finite height hh. As the gas is cooled, a second order phase transition occurs, in which the particles preferentially occupy one side of the box. We develop a quantitative theory of this clustering phenomenon and find good agreement with numerical simulations

    Microscopic origin of granular ratcheting

    Full text link
    Numerical simulations of assemblies of grains under cyclic loading exhibit ``granular ratcheting'': a small net deformation occurs with each cycle, leading to a linear accumulation of deformation with cycle number. We show that this is due to a curious property of the most frequently used models of the particle-particle interaction: namely, that the potential energy stored in contacts is path-dependent. There exist closed paths that change the stored energy, even if the particles remain in contact and do not slide. An alternative method for calculating the tangential force removes granular ratcheting.Comment: 13 pages, 18 figure

    Heteronuclear ionizing collisions between laser-cooled metastable helium atoms

    Get PDF
    We have investigated cold ionizing heteronuclear collisions in dilute mixtures of metastable (2 3S1) 3He and 4He atoms, extending our previous work on the analogous homonuclear collisions [R. J. W. Stas et al., PRA 73, 032713 (2006)]. A simple theoretical model of such collisions enables us to calculate the heteronuclear ionization rate coefficient, for our quasi-unpolarized gas, in the absence of resonant light (T = 1.2 mK): K34(th) = 2.4*10^-10 cm^3/s. This calculation is supported by a measurement of K34 using magneto-optically trapped mixtures containing about 1*10^8 atoms of each species, K34(exp) = 2.5(8)*10^-10 cm^3/s. Theory and experiment show good agreement.Comment: 8 pages, 6 figure

    The dynamical distance to M15: estimates of the cluster's age and mass and of the absolute magnitude of its RR Lyrae stars

    Get PDF
    Newly determined high-precision relative proper motions determined from the Hubble Space Telescope Wide Field Planetary Camera 2 are used along with radial velocity measurements to determine the dynamical distance to the globular cluster M15. A comparison of the proper motion and radial velocity dispersions from a sample of 237 stars, located at an average radial distance of about 10" from the cluster center, yields a cluster distance of 9.98+/-0.47 kpc. This distance agrees to within the stated errors to other distance estimates but places this object about 5% closer than the currently adopted value of 10.4 kpc. Using this new distance, we estimate that RR Lyrae stars having [Fe/H]=-2.15 have a value of M-v(RR)=0.51+/-0.11. We also estimate that M 15 has an age of about 13.2 Gyr, which places it among the oldest of the Galactic globular clusters. From a comparison of the observed velocity dispersion with results from recent N-body calculations, we derive a total cluster mass for M 15 of M-C=4.5x10(5) M-circle dot

    A Degenerate Bose-Fermi Mixture of Metastable Atoms

    Full text link
    We report the observation of simultaneous quantum degeneracy in a dilute gaseous Bose-Fermi mixture of metastable atoms. Sympathetic cooling of helium-3 (fermion) by helium-4 (boson), both in the lowest triplet state, allows us to produce ensembles containing more than 10^6 atoms of each isotope at temperatures below 1 micro-Kelvin, and achieve a fermionic degeneracy parameter of T/Tf=0.45. Due to their high internal energy, the detection of individual metastable atoms with sub-nanosecond time resolution is possible, permitting the study of bosonic and fermionic quantum gases with unprecedented precision. This may lead to metastable helium becoming the mainstay of quantum atom optics.Comment: 4 pages, 3 figures submitted to PR

    Spatial Correlations in Compressible Granular Flows

    Get PDF
    For a freely evolving granular fluid, the buildup of spatial correlations in density and flow field is described using fluctuating hydrodynamics. The theory for incompressible flows is extended to the general, compressible case, including longitudinal velocity and density fluctuations, and yields qualitatively different results for long range correlations. The structure factor of density fluctuations shows a maximum at finite wavenumber, shifting in time to smaller wavenumbers and corresponding to a growing correlation length. It agrees well with two-dimensional molecular dynamics simulations.Comment: 12 pages, Latex, 3 figure

    Coefficient of restitution for elastic disks

    Full text link
    We calculate the coefficient of restitution, ϵ\epsilon, starting from a microscopic model of elastic disks. The theory is shown to agree with the approach of Hertz in the quasistatic limit, but predicts inelastic collisions for finite relative velocities of two approaching disks. The velocity dependence of ϵ\epsilon is calculated numerically for a wide range of velocities. The coefficient of restitution furthermore depends on the elastic constants of the material via Poisson's number. The elastic vibrations absorb kinetic energy more effectively for materials with low values of the shear modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
    corecore