42 research outputs found
X-ray polarization from accreting white dwarfs and associated systems
We present our results of Monte-Carlo simulations of polarized Compton X-rays
from magnetic cataclysmic variables, with realistic density, temperature and
velocity structures in the accretion flow. Our study has shown that the X-ray
linear polarization may reach about 8% for systems with high accretion rates
viewed at a high viewing inclination angle. This value is roughly twice the
maximum value obtained by previous studies which assumed a cold, static
emission region with a uniform density. We also investigate the X-ray
polarization properties of ultra-compact double-degenerate binaries for the
unipolar-inductor and direct-impact accretor models. Our study has shown
negligible X-ray polarization for the unipolar-induction model. However, the
direct-impact accretor model may give X-ray polarization levels similar to that
predicted for the magnetic cataclysmic variables.Comment: to appear in "X-ray Polarimetry: A New Window in Astrophysics",
edited by R. Bellazzini, E. Costa, G. Matt and G. Tagliaferr
In Silico Nanodosimetry: New Insights into Nontargeted Biological Responses to Radiation
The long-held view that radiation-induced biological damage must be initiated in the cell nucleus, either on or near DNA itself, is being confronted by mounting evidence to suggest otherwise. While the efficacy of cell death may be determined by radiation damage to nuclear DNA, a plethora of less deterministic biological responses has been observed when DNA is not targeted. These so-called
nontargeted responses cannot be understood in the framework of DNA-centric radiobiological models; what is needed are new physically motivated models that address the damage-sensing signalling pathways triggered by the production of reactive free radicals. To this end, we have conducted a series of in silico experiments aimed at elucidating the underlying physical processes responsible for nontargeted biological responses to radiation. Our simulation studies implement new results on very low-energy electromagnetic interactions in liquid water (applicable down to nanoscales) and we also consider a realistic simulation of extranuclear microbeam irradiation of a cell. Our results support the idea that organelles with important functional roles, such as mitochondria and lysosomes, as well as membranes, are viable targets for ionizations and excitations, and their chemical composition and density are critical to determining the free radical yield and ensuing biological responses
X-ray polarization in relativistic jets
We investigate the polarization properties of Comptonized X-rays from relativistic jets in active galactic nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disc; scattering of cosmic microwave background (CMB) photons and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disc and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases, the maximum linear polarization is ≈20 per cent. In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations P≈ 10–20 per cent when synchrotron emission is localized near the jet base, while P≈ 20–70 per cent for the case of uniform emission throughout the jet. These results indicate that X-ray polarimetry may be capable of providing unique clues to identify the location of particle acceleration sites in relativistic jets. In particular, if synchrotron photons are emitted quasi-uniformly throughout a jet, then the observed degree of X-ray polarization may be sufficiently different for each of the competing X-ray emission mechanisms (synchrotron, SSC or external Comptonization) to determine which is the dominant process. However, X-ray polarimetry alone is unlikely to be able to distinguish between disc and CMB Comptonization
The safety of at home powdered infant formula preparation: a community science project
Formula fed infants experience gastrointestinal infections at higher rates than breastfed infants, due in part to bacteria in powdered infant formula (PIF) and bacterial contamination of infant feeding equipment. The United Kingdom National Health Service (UK NHS) has adopted the World Health Organization recommendation that water used to reconstitute PIF is ≥70°C to eliminate bacteria. We used community science methods to co‐design an at home experiment and online questionnaire (‘research diary’) to explore the safety of PIF preparation compared to UK NHS guidelines. 200 UK‐based parents of infants aged ≤12 months were recruited; 151 provided data on PIF preparation, and 143 were included in the analysis of water temperatures used to reconstitute PIF. Only 14.9% (n = 11) of 74 PIF preparation machines produced a water temperature of ≥70°C compared with 78.3% (n = 54) of 69 kettle users (p < 0.001). The mean temperature of water dispensed by PIF preparation machines was 9°C lower than kettles (Machine M = 65.78°C, Kettle M = 75.29°C). Many parents did not always fully follow NHS safer PIF preparation guidance, and parents did not appear to understand the potential risks of PIF bacterial contamination. Parents should be advised that the water dispensed by PIF preparation machines may be below 70°C, and could result in bacteria remaining in infant formula, potentially leading to gastrointestinal infections. PIF labelling should advise that water used to prepare PIF should be ≥70°C and highight the risks of not using sufficiently hot water, per WHO Europe advice. There is an urgent need for stronger consumer protections regarding PIF preparation devices
Severe Respiratory Syncytial Virus Bronchiolitis in Infants Is Associated with Reduced Airway Interferon Gamma and Substance P
Severe human respiratory syncytial virus (hRSV) bronchiolitis in previously well infants may be due to differences in the innate immune response to hRSV infection. Aim: to determine if factors mediating proposed mechanisms for severe bronchiolitis differ with severity of disease
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation
Abstract Predicting the responses of biological systems to ionising radiation is extremely challenging, particularly when comparing X-rays and heavy charged particles, due to the uncertainty in their Relative Biological Effectiveness (RBE). Here we assess the power of a novel mechanistic model of DNA damage repair to predict the sensitivity of cells to X-ray, proton or carbon ion exposures in vitro against over 800 published experiments. By specifying the phenotypic characteristics of cells, the model was able to effectively stratify X-ray radiosensitivity (R 2 = 0.74) without the use of any cell-specific fitting parameters. This model was extended to charged particle exposures by integrating Monte Carlo calculated dose distributions, and successfully fit to cellular proton radiosensitivity using a single dose-related parameter (R 2 = 0.66). Using these parameters, the model was also shown to be predictive of carbon ion RBE (R 2 = 0.77). This model can effectively predict cellular sensitivity to a range of radiations, and has the potential to support developments of personalised radiotherapy independent of radiation type