99 research outputs found

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    The Evolution of complexity in self-maintaining cellular information processing networks

    Get PDF
    We examine the role of self-maintenance (collective autocatalysis) in the evolution of computational biochemical networks. In primitive proto-cells (lacking separate genetic machinery) self-maintenance is a necessary condition for the direct reproduction and inheritance of what we here term Cellular Information Processing Networks (CIPNs). Indeed, partially reproduced or defective CIPNs may generally lead to malfunctioning or premature death of affected cells. We explore the interaction of this self-maintenance property with the evolution and adaptation of CIPNs capable of distinct information processing abilities. We present an evolutionary simulation platform capable of evolving artificial CIPNs from a bottom-up perspective. This system is an agent-based multi-level selectional Artificial Chemistry (AC) which employs a term rewriting system called the Molecular Classifier System (MCS). The latter is derived from the Holland broadcast language formalism. Using this system, we successfully evolve an artificial CIPN to improve performance on a simple pre-specified information processing task whilst subject to the constraint of continuous self-maintenance. We also describe the evolution of self-maintaining, crosstalking and multitasking, CIPNs exhibiting a higher level of topological and functional complexity. This proof of concept aims at contributing to the understanding of the open-ended evolutionary growth of complexity in artificial systems

    Evolution of self-maintaining cellular information processing networks

    Get PDF
    We examine the role of self-maintenance (collective autocatalysis) in the evolution of computational biochemical networks. In primitive proto-cells (lacking separate genetic machinery) self-maintenance is a necessary condition for the direct reproduction and inheritance of what we here term Cellular Information Processing Networks (CIPNs). Indeed, partially reproduced or defective CIPNs may generally lead to malfunctioning or premature death of affected cells. We explore the interaction of this self-maintenance property with the evolution and adaptation of CIPNs capable of distinct information processing abilities. We present an evolutionary simulation platform capable of evolving artificial CIPNs from a bottom-up perspective. This system is an agent-based multi-level selectional Artificial Chemistry (AC) which employs a term rewriting system called the Molecular Classifier System (MCS). The latter is derived from the Holland broadcast language formalism. Using this system, we successfully evolve an artificial CIPN to improve performance on a simple pre-specified information processing task whilst subject to the constraint of continuous self-maintenance. We also describe the evolution of self-maintaining, crosstalking and multitasking, CIPNs exhibiting a higher level of topological and functional complexity. This proof of concept aims at contributing to the understanding of the open-ended evolutionary growth of complexity in artificial systems

    Society-wide scenarios for effective integration of Paris-aligned climate mitigation and adaptation in national and regional policy

    Get PDF
    Climate science (IPCC 2018) and economics (Emmerling et al. 2019; Burke, Hsiang, and Miguel 2015) indicates that achieving far earlier and deeper mitigation than pledged to date is likely now critical to effective climate action ā€“ particularly to ensure limits to adaptation are not breached. However, clear and coherent comparisons of national and regional climate action have been lacking. Therefore, here we summarise a benchmarking method (McMullin et al. 2019) to establish a prudent, fair share of the remaining global CO2 budget for any Party to the Paris Agreement. Using Ireland as a case study, we analyse current policy ambition relative to this benchmarked national CO2 quota, demonstrate early emergence of CO2 debt, and show tacit mitigation policy reliance on future large scale carbon dioxide removal (CDR). Toward society-wide scenarios for effective climate action, we further examine the crucial roles of non-CO2 mitigation and safeguarding land carbon stocks

    Review: AISHE Conference 2009

    Get PDF
    A review of the 2009 conference of the All Ireland Society for Higher Education, which took place at NUI Maynooth, on August 27-28, 2009. Includes extensive hyperlinkage to additional information sources

    Unexpected evolutionary dynamics in a string based artificial chemistry

    Get PDF
    This work investigates closure in Cell Signaling Networks, which is one research area within the ESIGNET project. We employ a string-based Artificial Chemistry based on Hollandā€™s broadcast language (Molecular Classifier System, Broadcast Language, or MCS.b). We present a series of experiments focusing on the emergence and evolution of self-maintaining molecular organizations. Such experiments naturally relate to similar studies conducted in artificial chemistries such as Tierra, Alchemy and Alpha-Universes. However, our results demonstrate some counter-intuitive outcomes, not indicated in previous literature. Each of these ā€œunexpectedā€ evolutionary dynamics (including an elongation catastrophe phenomenon) are examined and explained both informally and formally. We also demonstrate how the elongation catastrophe can be prevented using a multi-level selectional model of the MCS.b (which acts both at the molecular and cellular level). This work provides complementary insights into the understanding of evolutionary dynamics in minimal artificial chemistries

    Evolving artificial cell signaling networks using molecular classifier systems

    Get PDF
    Nature is a source of inspiration for computational techniques which have been successfully applied to a wide variety of complex application domains. In keeping with this we examine Cell Signaling Networks (CSN) which are chemical networks responsible for coordinating cell activities within their environment. Through evolution they have become highly efficient for governing critical control processes such as immunological responses, cell cycle control or homeostasis. Realising (and evolving) Artificial Cell Signaling Networks (ACSNs) may provide new computational paradigms for a variety of application areas. Our abstraction of Cell Signaling Networks focuses on four characteristic properties distinguished as follows: Computation, Evolution, Crosstalk and Robustness. These properties are also desirable for potential applications in the control systems, computation and signal processing field. These characteristics are used as a guide for the development of an ACSN evolutionary simulation platform. In this paper we present a novel evolutionary approach named Molecular Classifier System (MCS) to simulate such ACSNs. The MCS that we have designed is derived from Holland's Learning Classifier System. The research we are currently involved in is part of the multi disciplinary European funded project, ESIGNET, with the central question of the study of the computational properties of CSNs by evolving them using methods from evolutionary computation, and to re-apply this understanding in developing new ways to model and predict real CSNs

    Studying complex adaptive systems using molecular classifier systems

    Get PDF
    Complex Adaptive Systems (CAS) are dynamical networks of interacting agents occurring in a variety of natural and artificial systems (e.g. cells, societies, stock markets). These complex systems have the ability to adapt, evolve and learn from experience. To study CAS, Holland proposed to employ agent-based systems in which Learning Classifier Systems (LCS) are used to determine the agents behavior and adaptivity. We argue that LCS are limited for the study of CAS: the rule-discovery mechanism is pre-specified and may limit the evolvability of CAS. Secondly, LCS distinguish a demarcation between messages and rules, however operations are reflexive in CAS, e.g. in a cell, an agent (a molecule) may both act as a message (substrate) and as a catalyst (rule). To address these issues, we proposed the Molecular Classifier Systems (MCS.b), a string-based artificial chemistry based on Hollandā€™s Broadcast Language. In the MCS.b, no explicit fitness function is specified, moreover no distinction is made between messages and rules. In the context of the ESIGNET project, we employ the MCS.b to study a subclass of CAS : Cell Signaling Networks (CSNs) which are complex biochemical networks responsible for coordinating cellular activities. As CSNs occur in cells, these networks must replicate themselves prior to cell division. In this poster we present a series of experiments focusing on the self-replication ability of these CAS

    A molecular approach to complex adaptive systems

    Get PDF
    Complex Adaptive Systems (CAS) are dynamical networks of interacting agents which as a whole determine the behavior, adaptivity and cognitive ability of the system. CAS are ubiquitous and occur in a variety of natural and artificial systems (e.g., cells, societies, stock markets). To study CAS, Holland proposed to employ an agent-based system in which Learning Classifier Systems (LCS) were used to determine the agents behavior and adaptivity. We argue that LCS are limited for the study of CAS: the rule-discovery mechanism is pre-specified and may limit the evolvability of CAS. Secondly, LCS distinguish a demarcation between messages and rules, however operations are reflexive in CAS, e.g., in a cell, an agent (a molecule) may both act as a message (substrate) and as a catalyst (rule). To address these issues, we proposed the Molecular Classifier Systems (MCS.b), a string-based Artificial Chemistry based on Hollandā€™s broadcast language. In the MCS.b, no explicit fitness function or rule discovery mechanism is specified, moreover no distinction is made between messages and rules. In the context of the ESIGNET project, we employ the MCS.b to study a subclass of CAS: Cell Signaling Networks (CSNs) which are complex biochemical networks responsible for coordinating cellular activities. As CSNs occur in cells, these networks must replicate themselves prior to cell division. In this paper we present a series of experiments focusing on the self-replication ability of these CAS. Results indicate counter intuitive outcomes as opposed to those inferred from the literature. This work highlights the current deficit of a theoretical framework for the study of Artificial Chemistries

    Modeling and evolving biochemical networks: insights into communication and computation from the biological domain

    Get PDF
    This paper is concerned with the modeling and evolving of Cell Signaling Networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We examine the possibility to computationally evolve and simulate Artificial Cell Signaling Networks (ACSNs) by means of Evolutionary Computation techniques. From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. For example, understanding some inherent properties of CSNs such as crosstalk may be of interest: A potential benefit of engineering crosstalking systems is that it allows the modification of a specific process according to the state of other processes in the system. This is clearly necessary in order to achieve complex control tasks. This work may also contribute to the biological understanding of the origins and evolution of real CSNs. An introduction to CSNs is first provided, in which we describe the potential applications of modeling and evolving these biochemical networks in silico. We then review the different classes of techniques to model CSNs, this is followed by a presentation of two alternative approaches employed to evolve CSNs within the ESIGNET project. Results obtained with these methods are summarized and discussed
    • ā€¦
    corecore