75 research outputs found
Maternal Obesity and the Early Origins of Childhood Obesity: Weighing Up the Benefits and Costs of Maternal Weight Loss in the Periconceptional Period for the Offspring
There is a need to understand the separate or interdependent contributions of maternal prepregnancy BMI, gestational weight gain, glycaemic control, and macronutrient intake on the metabolic outcomes for the offspring. Experimental studies highlight that there may be separate influences of maternal obesity during the periconceptional period and late gestation on the adiposity of the offspring. While a period of dietary restriction in obese mothers may ablate the programming of obesity, it is associated with an activation of the stress axis in the offspring. Thus, maternal obesity may result in epigenetic changes which predict the need for efficient fat storage in postnatal life, while maternal weight loss may lead to epigenetic changes which predict later adversity. Thus, development of dietary interventions for obese mothers during the periconceptional period requires a greater evidence base which allows the effective weighing up of the metabolic benefits and costs for the offspring
Regulation of microRNA during cardiomyocyte maturation in sheep.
BACKGROUND: There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. RESULTS: The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of 'pro-proliferative' miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. CONCLUSION: The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process
The periconceptional environment and cardiovascular disease: does in vitro embryo culture and transfer influence cardiovascular development and health?
Assisted Reproductive Technologies (ARTs) have revolutionised reproductive medicine; however, reports assessing the effects of ARTs have raised concerns about the immediate and long-term health outcomes of the children conceived through ARTs. ARTs include manipulations during the periconceptional period, which coincides with an environmentally sensitive period of gamete/embryo development and as such may alter cardiovascular development and health of the offspring in postnatal life. In order to identify the association between ARTs and cardiovascular health outcomes, it is important to understand the events that occur during the periconceptional period and how they are affected by procedures involved in ARTs. This review will highlight the emerging evidence implicating adverse cardiovascular outcomes before and after birth in offspring conceived through ARTs in both human and animal studies. In addition, it will identify the potential underlying causes and molecular mechanisms responsible for the congenital and adult cardiovascular dysfunctions in offspring whom were conceived through ARTs.Monalisa Padhee, Song Zhang, Shervi Lie, Kimberley C. Wang, Kimberley J. Botting, I. Caroline McMillen, Severence M. MacLaughlin and Janna L. Morriso
Differential impact of low birth weight on PPAR and leptin expression in perirenal fat in male and female lambs
Scientific Abstract 93. Objective: Epidemiological studies have shown that a low birth weight coupled with a rapid postnatal growth rate is associated with an increased adiposity in adult life. We have investigated the impact of low birth weight and gender on the expression of genes that regulate the differentiation (PPARy, RXRa), insulin sensitivity (adiponectin) and lipid metabolism (leptin, LPL, G3PDH) of perirenal adipocytes in lambs at 21d of life. Methods: Lambs were separated into low birth weight (LBW, 4.5kg, n=15) groups. An Insulin RIA and competitive ELISA for leptin were used for plasma analyses. The relative quantity of PPARy, RXRa, leptin, adiponectin, LPL, and G3PDH mRNA in the perirenal fat depot was determined by qRT-PCR, and the mean size of adipocytes was determined using standard image analysis. Results: There was no difference between LBW and ABW lambs in the relative perirenal adipose tissue (PAT) mass at 21d. Plasma insulin concentrations during the first 24h after birth were strongly correlated with size of perirenal adipocytes at 21d (r²=0.57,
Impact of periconceptional and preimplantation undernutrition on factors regulating myogenesis and protein synthesis in muscle of singleton and twin fetal sheep.
In this study, we determined the effect of maternal undernutrition in the periconceptional (PCUN: ~80 days before to 6 days after conception) and preimplantation (PIUN: 0-6 days after conception) periods on the mRNA and protein abundance of key factors regulating myogenesis and protein synthesis, and on the relationship between the abundance of these factors and specific microRNA expression in the quadriceps muscle of singleton and twin fetal sheep at 135-138 days of gestation. PCUN and PIUN resulted in a decrease in the protein abundance of MYF5, a factor which determines the myogenic lineage, in singletons and twins. Interestingly, there was a concomitant increase in insulin-like growth factor-1 mRNA expression, a decrease in the protein abundance of the myogenic inhibitor, myostatin (MSTN), and an increase in the mRNA and protein abundance of the MSTN inhibitor, follistatin (FST), in the PCUN and PIUN groups in both singletons and twins. These promyogenic changes may compensate for the decrease in MYF5 protein abundance evoked by early embryonic undernutrition. PCUN and PIUN also increased the protein abundance of phosphorylated eukaryotic translation initiation factor binding protein 1 (EIF4EBP1; T70 and S65) in fetal muscle in singletons and twins. There was a significant inverse relationship between the expression of miR-30a-5p, miR-30d-5p, miR-27b-3p, miR106b-5p, and miR-376b and the protein abundance of mechanistic target of rapamycin (MTOR), FST, or MYF5 in singletons or twins. In particular, the expression of miR-30a-5p was increased and MYF5 protein abundance was decreased, in PCUN and PIUN twins supporting the conclusion that the impact of PCUN and PIUN is predominantly on the embryo
Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life
Low birth weight (LBW) is associated with increased risk of adult cardiovascular disease and this association may be partly a consequence of early programming of the renin-angiotensin system (RAS). We investigated the effects of LBW on expression of molecules in the RAS and cardiac tissue remodeling. Left ventricular samples were collected from the hearts of 21 days old lambs that were born average birth weight (ABW) and LBW. Cardiac mRNA expression was quantified using real-time RT-PCR and protein expression was quantified using Western blotting. DNA methylation and histone acetylation were assessed by combined bisulfite restriction analysis and chromatin immunoprecipitation, respectively. There were increased plasma renin activity, angiotensin I (ANGI), and ANGII concentrations in LBW compared to ABW lambs at day 20. In LBW lambs, there was increased expression of cardiac ACE2 mRNA, decreased ANGII receptor type 1 (AT1R) protein, and acetylation of histone H3K9 of the AT1R promoter but no changes in AT1R mRNA expression and AT1R promoter DNA methylation. There was no difference in the abundance of proteins involved in autophagy or fibrosis. BIRC5 and VEGF mRNA expression was increased; however, the total length of the capillaries was decreased in the hearts of LBW lambs. Activation of the circulating and local cardiac RAS in neonatal LBW lambs may be expected to increase cardiac fibrosis, autophagy, and capillary length. However, we observed only a decrease in total capillary length, suggesting a dysregulation of the RAS in the heart of LBW lambs and this may have significant implications for heart health in later life.Kimberley C. W. Wang, Doug A. Brooks, Brooke Summers‐Pearce, Larisa Bobrovskaya, Darran N. Tosh, Jaime A. Duffield, Kimberley J. Botting, Song Zhang, I. Caroline McMillen, Janna L. Morriso
Improving pregnancy outcomes in humans through studies in sheep
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus
Maternal nutrition and the programming of obesity: The brain
The increasing incidence of obesity in the developed and developing world in the last decade has led to a need to define our understanding of the physiological mechanisms which can predispose individuals to weight gain in infancy, childhood and adulthood. There is now a considerable body of evidence which has shown that the pathway to obesity may begin very early in life, and that exposure to an inappropriate level of nutrition during prenatal and/or early postnatal development can predispose individuals to obesity in later life The brain is at the heart of the regulation of appetite and food preferences, and it is increasingly being recognized that the development of central appetitive structures is acutely sensitive to the nutritional environment both before and immediately after birth. This review will summarize the body of work which has highlighted the critical role of the brain in the early origins of obesity and presents some perspectives as to the potential application of these research findings in the clinical setting
Intrauterine Growth Restriction and Differential Patterns of Hepatic Growth and Expression of IGF1, PCK2, and HSDL1 mRNA in the Sheep Fetus in Late Gestation1
Fetal adaptations to periods of substrate deprivation can result in the programming of glucose intolerance, insulin resistance, and metabolic dysfunction in later life. Placental insufficiency can be associated with either sparing or sacrifice of fetal liver growth, and these different responses may have different metabolic consequences. It is unclear what intrahepatic mechanisms determine the differential responses of the fetal liver to substrate restriction. We investigated the effects of placental restriction (PR) on liver growth and the hepatic expression of SLC2A1, IGF1, IGF2, IGF1R, IGF2R, PPARGC1A, PPARA, PRKAA1, PRKAA2, PCK2, and HSDL1 mRNA in fetal sheep at 140–145 days of gestation. A mean gestational arterial partial pressure of oxygen less than 17 mmHg was defined as hypoxic, and a relative liver of weight more than 2 SD below the mean liver weight of controls was defined as reduced liver growth. Fetuses therefore were defined as control-normoxic (C-N; n = 9), PR-normoxic (PR-N; n = 7), PR-hypoxic (PR-H; n = 8), or PR-hypoxic reduced liver growth (PR-H RLG; n = 4). Hepatic SLC2A1 mRNA expression was highest (P < 0.05) in the PR-H fetuses, in which liver growth was maintained. Expression of IGF1 mRNA was decreased (P < 0.05) only in the PR-H RLG group. Hepatic expression of HSDL1, PPARGC1A, and PCK2 mRNA also were increased (P < 0.05) in the PR-H RLG fetuses. The present study highlights that intrahepatic responses to fetal substrate restriction may exist that protect the liver from decreased growth and, potentially, from a decreased responsiveness to the actions of insulin in postnatal life
- …