94 research outputs found
Self-consistent scattering description of transport in normal-superconductor structures
We present a scattering description of transport in several
normal-superconductor structures. We show that the related requirements of
self-consistency and current conservation introduce qualitative changes in the
transport behavior when the current in the superconductor is not negligible.
The energy thresholds for quasiparticle propagation in the superconductor are
sensitive to the existence of condensate flow (). This dependence is
responsible for a rich variety of transport regimes, including a voltage range
in which only Andreev transmission is possible at the interfaces, and a state
of gapless superconductivity which may survive up to high voltages if
temperature is low. The two main effects of current conservation are a shift
towards lower voltages of the first peak in the differential conductance and an
enhancement of current caused by the greater availability of charge
transmitting scattering channels.Comment: 31 pages, 10 PS figures, Latex file, psfig.sty file is added. To
appear in Phys. Rev. B (Jan 97
Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures
We discuss a number of basic physical mechanisms relevant to the formation of
the proximity effect in superconductor/normal metal (SN) systems. Specifically,
we review why the proximity effect sharply discriminates between systems with
integrable and chaotic dynamics, respectively, and how this feature can be
incorporated into theories of SN systems. Turning to less well investigated
terrain, we discuss the impact of quantum diffractive scattering on the
structure of the density of states in the normal region. We consider ballistic
systems weakly disordered by pointlike impurities as a test case and
demonstrate that diffractive processes akin to normal metal weak localization
lead to the formation of a hard spectral gap -- a hallmark of SN systems with
chaotic dynamics. Turning to the more difficult case of clean systems with
chaotic boundary scattering, we argue that semiclassical approaches, based on
classifications in terms of classical trajectories, cannot explain the gap
phenomenon. Employing an alternative formalism based on elements of
quasiclassics and the ballistic -model, we demonstrate that the inverse
of the so-called Ehrenfest time is the relevant energy scale in this context.
We discuss some fundamental difficulties related to the formulation of low
energy theories of mesoscopic chaotic systems in general and how they prevent
us from analysing the gap structure in a rigorous manner. Given these
difficulties, we argue that the proximity effect represents a basic and
challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde
Multiwavelength Studies of Young OB Associations
We discuss how contemporary multiwavelength observations of young
OB-dominated clusters address long-standing astrophysical questions: Do
clusters form rapidly or slowly with an age spread? When do clusters expand and
disperse to constitute the field star population? Do rich clusters form by
amalgamation of smaller subclusters? What is the pattern and duration of
cluster formation in massive star forming regions (MSFRs)? Past observational
difficulties in obtaining good stellar censuses of MSFRs have been alleviated
in recent studies that combine X-ray and infrared surveys to obtain rich,
though still incomplete, censuses of young stars in MSFRs. We describe here one
of these efforts, the MYStIX project, that produced a catalog of 31,784
probable members of 20 MSFRs. We find that age spread within clusters are real
in the sense that the stars in the core formed after the cluster halo. Cluster
expansion is seen in the ensemble of (sub)clusters, and older dispersing
populations are found across MSFRs. Direct evidence for subcluster merging is
still unconvincing. Long-lived, asynchronous star formation is pervasive across
MSFRs.Comment: 22 pages, 9 figures. To appear in "The Origin of Stellar Clusters",
edited by Steven Stahler, Springer, 2017, in pres
Theory of asymmetric non-additive binary hard-sphere mixtures
We show that the formal procedure of integrating out the degrees of freedom
of the small spheres in a binary hard-sphere mixture works equally well for
non-additive as it does for additive mixtures. For highly asymmetric mixtures
(small size ratios) the resulting effective Hamiltonian of the one-component
fluid of big spheres, which consists of an infinite number of many-body
interactions, should be accurately approximated by truncating after the term
describing the effective pair interaction. Using a density functional treatment
developed originally for additive hard-sphere mixtures we determine the zero,
one, and two-body contribution to the effective Hamiltonian. We demonstrate
that even small degrees of positive or negative non-additivity have significant
effect on the shape of the depletion potential. The second virial coefficient
, corresponding to the effective pair interaction between two big spheres,
is found to be a sensitive measure of the effects of non-additivity. The
variation of with the density of the small spheres shows significantly
different behavior for additive, slightly positive and slightly negative
non-additive mixtures. We discuss the possible repercussions of these results
for the phase behavior of binary hard-sphere mixtures and suggest that
measurements of might provide a means of determining the degree of
non-additivity in real colloidal mixtures
Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model
We propose and investigate a model for the coexistence of Superconductivity
(SC) and Ferroelectricity (FE) based on the dynamical symmetries for
the pseudo-spin SC sector, for the displaced oscillator FE sector, and
for the composite system. We assume a minimal
symmetry-allowed coupling, and simplify the hamiltonian using a double mean
field approximation (DMFA). A variational coherent state (VCS) trial
wave-function is used for the ground state: the energy, and the relevant order
parameters for SC and FE are obtained. For positive sign of the SC-FE coupling
coefficient, a non-zero value of either order parameter can suppress the other
(FE polarization suppresses SC and vice versa). This gives some support to
"Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive.
For such a Ferroelectric Superconductor we predict: a) the SC gap
(and ) will increase with increasing applied pressure when pressure
quenches FE as in many ferroelectrics, and b) the FE polarization will increase
with increaesing magnetic field up to . The last result is equivalent to
the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE
material. Some discussion will be given of the relation of these results to the
cuprate superconductors.Comment: 46 page
Oralism: a sign of the times? The contest for deaf communication in education provision in late nineteenth-century Scotland
Disability history is a diverse field. In focussing upon children within deaf education in late nineteenth-century Scotland, this essay reflects some of that diversity. In 1880, the International Congress on the Education of the Deaf in Milan stipulated that speech should have ‘preference’ over signs in the education of deaf children. The mode of achieving this, however, effectively banned sign language. Endeavours to teach deaf children to articulate were not new, but this decision placed pressures on deaf institutions to favour the oral system of deaf communication over other methods. In Scotland efforts were made to adopt oralism, and yet educators were faced with the reality that this was not good educational practice for most pupils. This article will consider responses of Scottish educators of deaf children from the 1870s until the beginning of the twentieth century
Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross
Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss
A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: A secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study
Background
Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity.
Methods
In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg −1 min −1 and peak oxygen consumption (VO 2 peak) >16 ml kg −1 min −1, cut-points that represent a reduced risk of postoperative complications.
Results
Five questions were identified to have dominance in predicting AT>11 ml kg −1 min −1 and VO 2 peak>16 ml.kg −1min −1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg −1.min −1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO 2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO 2 peak>16 ml.kg −1.min −1 and VO 2 peak<16 ml.kg −1.min −1.
Conclusions
The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
- …