6,816 research outputs found
Binary-Binary Interactions and the Formation of the PSR B1620-26 Triple System in M4
The hierarchical triple system containing the millisecond pulsar PSR B1620-26
in M4 is the first triple star system ever detected in a globular cluster. Such
systems should form in globular clusters as a result of dynamical interactions
between binaries. We propose that the triple system containing PSR B1620-26
formed through an exchange interaction between a wide primordial binary and a
{\it pre-existing\/} binary millisecond pulsar. This scenario would have the
advantage of reconciling the yr timing age of the pulsar with the
much shorter lifetime of the triple system in the core of M4.Comment: 13 pages, uuencoded compressed postscript with figures, IASSNS-AST
94/4
Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure
Relationship between emergency presentation, systemic inflammatory response, and cancer-specific survival in patients undergoing potentially curative surgery for colon cancer
Background
Emergency presentation is recognized to be associated with poorer cancer-specific survival following curative resection for colorectal cancer. The present study examined the hypothesis that an enhanced systemic inflammatory response, prior to surgery, might explain the impact of emergency presentation on survival.
Methods
In all, 188 patients undergoing potentially curative resection for colorectal cancer were studied. Of these, 55 (29%) presented as emergencies. The systemic inflammatory response was assessed using the Glasgow Prognostic Score (mGPS), which is the combination of an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (<35 g/L).
Results
In the emergency group, tumor stage was greater (P < 0.01), more patients received adjuvant therapy (P < 0.01) more patients had an elevated mGPS (P < 0.01), and more patients died of their disease (P < 0.05). The minimum follow-up was 12 months; the median follow-up of the survivors was 48 months. Emergency presentation was associated with poorer 3-year cancer-specific survival in those patients aged 65 to 74 years (P < 0.01), in both males and females (P < 0.05), in the deprived (P < 0.01), in patients with tumor-node-metastasis (TNM) stage II disease (P < 0.01), in those who received no adjuvant therapy (P < 0.01), and in the mGPS 0 and 1 groups (P < 0.05) groups. On multivariate survival analysis of patients undergoing potentially curative surgery for TNM stage II colon cancer, emergency presentation (P < 0.05) and mGPS (P < 0.05) were independently associated with cancer-specific survival.
Conclusions
These results suggest that emergency presentation and the presence of systemic inflammatory response prior to surgery are linked and account for poorer cancer-specific survival in patients undergoing potentially curative surgery for colon cancer. Both emergency presentation and an elevated mGPS should be taken into account when assessing the likely outcome of these patients
Nitrogen-rich transition metal nitrides
The solid state chemistry leading to the synthesis and characterization of metal nitrides with N:M ratios >1 is summarized. Studies of these compounds represent an emerging area of research. Most transition metal nitrides have much lower nitrogen contents, and they often form with non- or sub-stoichiometric compositions. These materials are typically metallic with often superconducting properties, and they provide highly refractory, high hardness materials with many technological applications. The higher metal nitrides should achieve formal oxidation states (OS) attaining those found among corresponding oxides, and they are expected to have useful semiconducting properties. Only a very few examples of such high OS nitrogen-rich compounds are known at present. The main group elements typically form covalently bonded nitride ceramics such as Si3N4, Ge3N4 and Sn3N4, and the early transition metals Zr and Hf produce Zr3N4 and Hf3N4. However, the only main example of a highly nitrided transition metal compound known to date is Ta3N5 that has a formal oxidation state +5 and is a semiconductor with visible light absorption leading to applications as a pigment and in photocatalysis. New synthesis routes are being explored to study the possible formation of other N-rich materials that are predicted to exist by ab initio calculations. There is a useful interplay between theoretical predictions and experimental synthesis studies at ambient and high pressure conditions, as we explore and establish the existence and structure–property relations of these new nitride compounds and polymorphs. Here we review the state of current investigations and indicate possible new directions for further work
Some Feeding Habits of Moose in Yellowstone Park
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/119103/1/ecy1953341102.pd
Splitting Proofs for Interpolation
We study interpolant extraction from local first-order refutations. We
present a new theoretical perspective on interpolation based on clearly
separating the condition on logical strength of the formula from the
requirement on the com- mon signature. This allows us to highlight the space of
all interpolants that can be extracted from a refutation as a space of simple
choices on how to split the refuta- tion into two parts. We use this new
insight to develop an algorithm for extracting interpolants which are linear in
the size of the input refutation and can be further optimized using metrics
such as number of non-logical symbols or quantifiers. We implemented the new
algorithm in first-order theorem prover VAMPIRE and evaluated it on a large
number of examples coming from the first-order proving community. Our
experiments give practical evidence that our work improves the state-of-the-art
in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201
Evaluation of ERTS-1 data for certain hydrological uses
The author has identified the following significant results. ERTS-1 MSS data have been used in a variety of hydrologic research including snow-extent mapping; studies of snowmelt, snowmelt runoff, spectral reflectance of snow for assessing snowpack conditions, and snow albedo; lake ice formation, breakup, and migration; lake current measurements; multispectral studies of lake ice; and flood studies. MSS sensing of soil moisture over a well-vegetated test site was unsuccessfully attempted. Although a powerful research tool, ERTS-1 has very limited use as an operational system for hydrologic communities because of its 18-day revisit cycle and its lack of a quick look capability
Preoperative systemic inflammation predicts postoperative infectious complications in patients undergoing curative resection for colorectal cancer
The presence of systemic inflammation before surgery, as evidenced by the glasgow prognostic score (mGPS), predicts poor long-term survival in colorectal cancer. The aim was to examine the relationship between the preoperative mGPS and the development of postoperative complications in patients undergoing potentially curative resection for colorectal cancer. Patients (n=455) who underwent potentially curative resections between 2003 and 2007 were assessed consecutively, and details were recorded in a database. The majority of patients presented for elective surgery (85%) were over the age of 65 years (70%), were male (58%), were deprived (53%), and had TNM stage I/II disease (61%), had preoperative haemoglobin (56%), white cell count (87%) and mGPS 0 (58%) in the normal range. After surgery, 86 (19%) patients developed a postoperative complication; 70 (81%) of which were infectious complications. On multivariate analysis, peritoneal soiling (P<0.01), elevated preoperative white cell count (P<0.05) and mGPS (P<0.01) were independently associated with increased risk of developing a postoperative infection. In elective patients, only the mGPS (OR=1.75, 95% CI=1.17-2.63, P=0.007) was significantly associated with increased risk of developing a postoperative infection. Preoperative elevated mGPS predicts increased postoperative infectious complications in patients undergoing potentially curative resection for colorectal cancer
- …