529 research outputs found

    Small RNAs and Immunity

    Get PDF
    AbstractSmall RNAs of 21ā€“23 nucleotides are powerful regulators of gene expression and play essential roles in biological processes that include development, maintenance of genome stability, and viral adaptive defense mechanisms. Such small RNAs are simple in design yet rich in biology and have captivated the attention of biologists in many fields. This review discusses the potential roles of small RNAs in immune biology and speculates on their potential participation in lymphogenesis and antiviral mechanisms

    A comparison of analysis techniques for extracting resonance parameters from lattice Monte Carlo data

    Full text link
    Different methods for extracting resonance parameters from Euclidean lattice field theory are tested. Monte Carlo simulations of the O(4) non-linear sigma model are used to generate energy spectra in a range of different volumes both below and above the inelastic threshold. The applicability of the analysis methods in the elastic region is compared. Problems which arise in the inelastic region are also emphasised.Comment: 17 pages, 20 figures; clarification and minor corrections added, to appear in PR

    Rapid creation and quantitative monitoring of high coverage shRNA libraries.

    Get PDF
    Short hairpin RNA libraries are limited by low efficacy of many shRNAs and by off-target effects, which give rise to false negatives and false positives, respectively. Here we present a strategy for rapidly creating expanded shRNA pools (approximately 30 shRNAs per gene) that are analyzed by deep sequencing (EXPAND). This approach enables identification of multiple effective target-specific shRNAs from a complex pool, allowing a rigorous statistical evaluation of true hits

    CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-ĪŗB reporter.

    Get PDF
    The innate immune system protects against infections by initiating an inducible inflammatory response. NF-ĪŗB is one of the critical transcription factors controlling this complex response, but some aspects of its regulation remain unclear. For example, although long non-coding RNAs (lncRNAs) have been shown to critically regulate gene expression, only a fraction of these have been functionally characterized, and the extent to which lncRNAs control NF-ĪŗB expression is unknown. Here, we describe the generation of a GFP-based NF-ĪŗB reporter system in immortalized murine bone marrow-derived macrophages (iBMDM). Activation of this reporter, using Toll-like receptor ligands, resulted in GFP expression, which could be monitored by flow cytometry. We also established a CRISPR/Cas9 gene deletion system in this NF-ĪŗB reporter line, enabling us to screen for genes that regulate NF-ĪŗB signaling. Our deletion-based approach identified two long intergenic non-coding(linc)RNAs, lincRNA-Cox2 and lincRNA-AK170409, that control NF-ĪŗB signaling. We demonstrate a potential novel role for lincRNA-Cox2 in promoting IĪŗBĪ± degradation in the cytoplasm. For lincRNA-AK170409, we provide evidence that this nuclearly-localized lincRNA regulates a number of inflammation-related genes. In conclusion, we have established an NF-ĪŗB-GFP iBMDM reporter cell line and a line that stably expresses Cas9. Our approach enabled the identification of lincRNA-Cox2 and lincRNA-AK170409 as NF-ĪŗB regulators, and this tool will be useful for identifying additional genes involved in regulating this transcription factor critical for immune function

    Argonaute2 Is Essential for Mammalian Gastrulation and Proper Mesoderm Formation

    Get PDF
    Mammalian Argonaute proteins (EIF2C1āˆ’4) play an essential role in RNA-induced silencing. Here, we show that the loss of eIF2C2 (Argonaute2 or Ago2) results in gastrulation arrest, ectopic expression of Brachyury (T), and mesoderm expansion. We identify a genetic interaction between Ago2 and T, as Ago2 haploinsufficiency partially rescues the classic T/+ short-tail phenotype. Finally, we demonstrate that the ectopic T expression and concomitant mesoderm expansion result from disrupted fibroblast growth factor signaling, likely due to aberrant expression of Eomesodermin. Together, these data indicate that a factor best known as a key component of the RNA-induced silencing complex is required for proper fibroblast growth factor signaling during gastrulation, suggesting a possible micro-RNA function in the formation of a mammalian germ layer

    Unintentional miRNA Ablation Is a Risk Factor in Gene Knockout Studies: A Short Report

    Get PDF
    One of the most powerful techniques for studying the function of a gene is to disrupt the expression of that gene using genetic engineering strategies such as targeted recombination or viral integration of gene trap cassettes. The tremendous utility of these tools was recognized this year with the awarding of the Nobel Prize in Physiology or Medicine to Capecchi, Evans, and Smithies for their pioneering work in targeted recombination mutagenesis in mammals. Another noteworthy discovery made nearly a decade ago was the identification of a novel class of non-coding genes called microRNAs. MicroRNAs are among the largest known classes of regulatory elements with more than 1000 predicted to exist in the mouse genome. Over 50% of known microRNAs are located within introns of coding genes. Given that currently about half of the genes in mouse have been knocked out, we investigated the possibility that intronic microRNAs may have been coincidentally deleted or disrupted in some of these mouse models. We searched published murine knockout studies and gene trap embryonic stem cell line databases for cases where a microRNA was located within or near the manipulated genomic loci, finding almost 200 cases where microRNA expression may have been disrupted along with another gene. Our results draw attention to the need for careful planning in future knockout studies to minimize the unintentional disruption of microRNAs. These data also raise the possibility that many knockout studies may need to be reexamined to determine if loss of a microRNA contributes to the phenotypic consequences attributed to loss of a protein-encoding gene

    A Whole-Genome RNA Interference Screen Reveals a Role for Spry2 in Insulin Transcription and the Unfolded Protein Response.

    Get PDF
    Insulin production by the pancreatic Ī²-cell is required for normal glucose homeostasis. While key transcription factors that bind to the insulin promoter are known, relatively little is known about the upstream regulators of insulin transcription. Using a whole-genome RNA interference screen, we uncovered 26 novel regulators of insulin transcription that regulate diverse processes including oxidative phosphorylation, vesicle traffic, and the unfolded protein response (UPR). We focused on Spry2-a gene implicated in human type 2 diabetes by genome-wide association studies but without a clear connection to glucose homeostasis. We showed that Spry2 is a novel UPR target and its upregulation is dependent on PERK. Knockdown of Spry2 resulted in reduced expression of Serca2, reduced endoplasmic reticulum calcium levels, and induction of the UPR. Spry2 deletion in the adult mouse Ī²-cell caused hyperglycemia and hypoinsulinemia. Our study greatly expands the compendium of insulin promoter regulators and demonstrates a novel Ī²-cell link between Spry2 and human diabetes

    Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition.

    Get PDF
    Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival. Here we show that a similar therapy-resistant cell state underlies the behaviour of persister cells derived from a wide range of cancers and drug treatments. Consequently, we demonstrate that persister cells acquire a dependency on GPX4. Loss of GPX4 function results in selective persister cell ferroptotic death in vitro and prevents tumour relapse in mice. These findings suggest that targeting of GPX4 may represent a therapeutic strategy to prevent acquired drug resistance
    • ā€¦
    corecore