12,747 research outputs found
Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films
It is known that solid-state reaction in high-pressure oxygen can stabilize
high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend
this superoxygenation concept of synthesis to thin films which, due to their
large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial
thin films of grown by pulsed laser deposition are
annealed at up to 700 atm O and 900C, in conjunction with Cu
enrichment by solid-state diffusion. The films show clear formation of
and as well as regions
of and YBaCuO phases,
according to scanning transmission electron microscopy, x-ray diffraction and
x-ray absorption spectroscopy. Similarly annealed
powders show no phase conversion. Our results demonstrate a novel route of
synthesis towards discovering more complex phases of cuprates and other
superconducting oxides.Comment: Accepted for publication in Physical Review Material
The Infrared Properties of Submillimeter Galaxies: Clues From Ultra-Deep 70 Micron Imaging
We present 70 micron properties of submillimeter galaxies (SMGs) in the Great
Observatories Origins Deep Survey (GOODS) North field. Out of thirty
submillimeter galaxies (S_850 > 2 mJy) in the central GOODS-N region, we find
two with secure 70 micron detections. These are the first 70 micron detections
of SMGs. One of the matched SMGs is at z ~ 0.5 and has S_70/S_850 and S_70/S_24
ratios consistent with a cool galaxy. The second SMG (z = 1.2) has
infrared-submm colors which indicate it is more actively forming stars. We
examine the average 70 micron properties of the SMGs by performing a stacking
analysis, which also allows us to estimate that S_850 > 2 mJy SMGs contribute 9
+- 3% of the 70 micron background light. The S_850/S_70 colors of the SMG
population as a whole is best fit by cool galaxies, and because of the
redshifting effects these constraints are mainly on the lower z sub-sample. We
fit Spectral Energy Distributions (SEDs) to the far-infrared data points of the
two detected SMGs and the average low redshift SMG (z_{median}= 1.4). We find
that the average low-z SMG has a cooler dust temperature than local
ultraluminous infrared galaxies (ULIRGs) of similar luminosity and an SED which
is best fit by scaled up versions of normal spiral galaxies. The average low-z
SMG is found to have a typical dust temperature T = 21 -- 33 K and infrared
luminosity L_{8-1000 micron} = 8.0 \times 10^11 L_sun. We estimate the AGN
contribution to the total infrared luminosity of low-z SMGs is less than 23%.Comment: Accepted by ApJ. 14 pages, 6 figures. Minor revisions 20th Dec 200
Simple Metals at High Pressure
In this lecture we review high-pressure phase transition sequences exhibited
by simple elements, looking at the examples of the main group I, II, IV, V, and
VI elements. General trends are established by analyzing the changes in
coordination number on compression. Experimentally found phase transitions and
crystal structures are discussed with a brief description of the present
theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice
course on High-Pressure Crystallography in June 2009, Sicily, Ital
350 Micron Dust Emission from High Redshift Objects
We report observations of a sample of high redshift sources (1.8<z<4.7),
mainly radio-quiet quasars, at 350 microns using the SHARC bolometer camera at
the Caltech Submillimeter Observatory. Nine sources were detected (>4-sigma)
and upper limits were obtained for 11 with 350 micron flux density limits
(3-sigma) in the range 30-125mJy. Combining published results at other
far-infrared and millimeter wavelengths with the present data, we are able to
estimate the temperature of the dust, finding relatively low values, averaging
50K. From the spectral energy distribution, we derive dust masses of a few 10^8
M_sun and luminosities of 4-33x10^{12} L_sun (uncorrected for any
magnification) implying substantial star formation activity. Thus both the
temperature and dust masses are not very different from those of local
ultraluminous infrared galaxies. For this redshift range, the 350 micron
observations trace the 60-100 micron rest frame emission and are thus directly
comparable with IRAS studies of low redshift galaxies.Comment: 5 pages, 2 PS figures. Accepted for publication in Astrophysical
Journal Letter
Effects of disorder in location and size of fence barriers on molecular motion in cell membranes
The effect of disorder in the energetic heights and in the physical locations
of fence barriers encountered by transmembrane molecules such as proteins and
lipids in their motion in cell membranes is studied theoretically. The
investigation takes as its starting point a recent analysis of a periodic
system with constant distances between barriers and constant values of barrier
heights, and employs effective medium theory to treat the disorder. The
calculations make possible, in principle, the extraction of confinement
parameters such as mean compartment sizes and mean intercompartmental
transition rates from experimentally reported published observations. The
analysis should be helpful both as an unusual application of effective medium
theory and as an investigation of observed molecular movements in cell
membranes.Comment: 9 pages, 5 figure
Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene
Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)
Molecular motion in cell membranes: analytic study of fence-hindered random walks
A theoretical calculation is presented to describe the confined motion of
transmembrane molecules in cell membranes. The study is analytic, based on
Master equations for the probability of the molecules moving as random walkers,
and leads to explicit usable solutions including expressions for the molecular
mean square displacement and effective diffusion constants. One outcome is a
detailed understanding of the dependence of the time variation of the mean
square displacement on the initial placement of the molecule within the
confined region. How to use the calculations is illustrated by extracting
(confinement) compartment sizes from experimentally reported published
observations from single particle tracking experiments on the diffusion of
gold-tagged G-protein coupled mu-opioid receptors in the normal rat kidney cell
membrane, and by further comparing the analytical results to observations on
the diffusion of phospholipids, also in normal rat kidney cells.Comment: 10 pages, 5 figure
Optimal Traffic Networks
Inspired by studies on the airports' network and the physical Internet, we
propose a general model of weighted networks via an optimization principle. The
topology of the optimal network turns out to be a spanning tree that minimizes
a combination of topological and metric quantities. It is characterized by a
strongly heterogeneous traffic, non-trivial correlations between distance and
traffic and a broadly distributed centrality. A clear spatial hierarchical
organization, with local hubs distributing traffic in smaller regions, emerges
as a result of the optimization. Varying the parameters of the cost function,
different classes of trees are recovered, including in particular the minimum
spanning tree and the shortest path tree. These results suggest that a
variational approach represents an alternative and possibly very meaningful
path to the study of the structure of complex weighted networks.Comment: 4 pages, 4 figures, final revised versio
- …