220 research outputs found

    Epidemiological study of E. coli O157:H7 isolated in Northern Ireland using pulsed-field gel electrophoresis (PFGE)

    Get PDF
    In Northern Ireland over the last 7 years, there is a mean of 41.9 laboratory reports per annum of human gastrointestinal infection (range 19-54) caused by Escherichia coli O157:H7. In the preceding years 1992-1996, reports were 5.4 per annum, whereas in 1997-2000, reports increased from 30 to 54 per annum. This high level has continued on an annual basis to date. The aim of this study was therefore to retrospectively examine this period of exponential increase in reports to help ascertain the genetic relatedness of strains employing pulsed-field gel electrophoresis (PFGE), as no data on the molecular epidemiology of E. coli O157:H7 in Northern Ireland has yet been published. Clinical isolates (n=84) were PFGE typed employing Xba I digestion and resulting band profiles demonstrated the presence of 13, 9 and 16 clonal types, for 1997, 1998 and 1999, respectively. In 1998, five clonal types remained from 1997 with the introduction of 4 new clonal types, whereas in 1999, 10 new clonal types were observed, accounting for over half (58%) of the E. coli O157 isolates for that year. These data suggest that, unlike gastrointestinal infections due to thermophilic campylobacters, there was considerable genetic evolution of PFGE clonal types of E. coli O157, through the displacement and emergence of genotypes. Further studies are now required to find the environmental reservoirs of these common clonal types of clinical E. coli O157:H7 in Northern Ireland to help define sources and routes of transmission of this infection locally

    First Results from a Photometric Survey of Strong Gravitational Lens Environments

    Full text link
    Many strong gravitational lenses lie in complex environments, such as poor groups of galaxies, that significantly bias conclusions from lens analyses. We are undertaking a photometric survey of all known galaxy-mass strong lenses to characterize their environments and include them in careful lens modeling, and to build a large, uniform sample of galaxy groups at intermediate redshifts for evolutionary studies. In this paper we present wide-field photometry of the environments of twelve lens systems with 0.24 < z_lens < 0.5. Using a red-sequence identifying technique, we find that eight of the twelve lenses lie in groups, and that ten group-like structures are projected along the line of sight towards seven of these lenses. Follow-up spectroscopy of a subset of these fields confirms these results. For lenses in groups, the group centroid position is consistent with the direction of the external tidal shear required by lens models. Lens galaxies are not all super-L_* ellipticals; the median lens luminosity is < L_*, and the distribution of lens luminosities extends 3 magnitudes below L_* (in agreement with theoretical models). Only two of the lenses in groups are the brightest group galaxy, in qualitative agreement with theoretical predictions. As in the local Universe, the highest velocity-dispersion groups contain a brightest member spatially coincident with the group centroid, whereas lower-dispersion groups tend to have an offset brightest group galaxy. This suggests that higher-dispersion groups are more dynamically relaxed than lower-dispersion groups and that at least some evolved groups exist by z ~ 0.5.Comment: Accepted for publication to the Astrophysical Journal. Figure 1 reduced in resolution. Requires emulateapj.sty. Table 6 to be published electronically. Revised version includes moderate changes to text, minor changes to conclusions, addition of one subsectio
    • …
    corecore