717 research outputs found

    Zero-Temperature Structures of Atomic Metallic Hydrogen

    Full text link
    Ab initio random structure searching with density functional theory was used to determine the zero-temperature structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including zero point motion in the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r_s = 1.225), which then remains stable to 2.5 TPa (r_s = 0.969). At higher pressures, hydrogen stabilizes in an ...ABCABC... planar structure that is remarkably similar to the ground state of lithium, which compresses to the face-centered cubic lattice beyond 5 TPa (r_s < 0.86). At this level of theory, our results provide a complete ab initio description of the atomic metallic structures of hydrogen, resolving one of the most fundamental and long outstanding issues concerning the structures of the elements.Comment: 9 pages; 4 figure

    Tracing, Security, and Safety: The Problem with Wild-Caught Seafood Supply Chains

    Get PDF
    This article explores the difficulties associated with long, complex, supply chains in seafood markets. It does a brief literature review, discusses some of the issues raised by the long supply chain, and then compares one long seafood supply chain to a short, problematic supply chain

    Calculating Nonlocal Optical Properties of Structures with Arbitrary Shape

    Full text link
    In a recent Letter [Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this Article, we detail the full method, and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.Comment: 30 pages, 12 figures, 1 tabl
    • …
    corecore