38 research outputs found

    A Mathematical Model of Muscle Containing Heterogeneous Half-Sarcomeres Exhibits Residual Force Enhancement

    Get PDF
    A skeletal muscle fiber that is stimulated to contract and then stretched from L1 to L2 produces more force after the initial transient decays than if it is stimulated at L2. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed) was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement

    The new cardioprotector Monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro

    Get PDF
    The new cardioprotector Monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro. Abou El Hassan MA, Verheul HM, Jorna AS, Schalkwijk C, van Bezu J, van der Vijgh WJ, Bast A. Department of Medical Oncology, Free University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands. [email protected] Besides its cardiotoxic effect, doxorubicin also elicits inflammatory effects in vivo. 7-Monohydroxyethylrutoside (monoHER) has recently been used as a protector against doxorubicin-induced cardiotoxicity in vivo. It is not known yet whether monoHER can also protect against doxorubicin-induced inflammatory effects. The aim of the present study was (1) to illustrate the inflammatory effects of doxorubicin in vitro and (2) to evaluate a possibly protective effect of monoHER. In order to demonstrate the inflammatory effects of doxorubicin and the possible protection of monoHER, proliferating human umbilical cord vascular endothelial cells (HUVECs) were incubated with different concentrations of doxorubicin ranging from 12.5 to 600 nM with(out) 200 micro M monoHER. Resting (confluent) HUVECs were incubated with (0.5-25 micro M) doxorubicin with(out) monoHER (0.2-1.2 mM) and the viability of endothelial cells and their propensity to adhere to neutrophils were measured 24 h after treatment. The localisation of adhered neutrophils was determined with immunofluorescence microscopy. To further characterise the mechanism of doxorubicin-induced neutrophil adhesion, the expression of the HUVECs surface adhesion molecules was determined after doxorubicin treatment. Doxorubicin decreased the viability and proliferation capacity of HUVECs in a concentration-dependent manner. The proliferating HUVECs were much more sensitive to doxorubicin (IC(50)=60.0+/-20.8 nM) than resting cells (LC(50)=4.0+/-0.3 micro M). Doxorubicin also increased the adhesion of neutrophils reaching a plateau value at a doxorubicin concentration of > or =0.4 micro M (P=0.0113). The induced neutrophil adhesion was accompanied by overexpression of VCAM and E-selectin but not ICAM. Although monoHER did not reverse the effect of doxorubicin on the proliferation of endothelial cells, it significantly protected resting HUVECs against the cytotoxic effect of doxorubicin (< or =25 micro M, P<0.0015). In addition, monoHER completely protected against the stimulatory effect of doxorubicin on neutrophil adhesion, and inhibited the doxorubin-induced expression of VCAM and E-selectin on the surface of treated HUVECs. This study illustrates that monoHER, which protects against doxorubicin's cardiotoxic effect, can also protect against doxorubicin-induced inflammatory effects. These data prompt further investigation about the possible link between doxorubicin-induced inflammatory effects and its cardiotoxicity in viv

    Interactions between Connected Half-Sarcomeres Produce Emergent Mechanical Behavior in a Mathematical Model of Muscle

    Get PDF
    Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes ∼300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most ∼30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere

    Modeling Activity and Target-Dependent Developmental Cell Death of Mouse Retinal Ganglion Cells Ex Vivo

    Get PDF
    Programmed cell death is widespread during the development of the central nervous system and serves multiple purposes including the establishment of neural connections. In the mouse retina a substantial reduction of retinal ganglion cells (RGCs) occurs during the first postnatal week, coinciding with the formation of retinotopic maps in the superior colliculus (SC). We previously established a retino-collicular culture preparation which recapitulates the progressive topographic ordering of RGC projections during early post-natal life. Here, we questioned whether this model could also be suitable to examine the mechanisms underlying developmental cell death of RGCs. Brn3a was used as a marker of the RGCs. A developmental decline in the number of Brn3a-immunolabelled neurons was found in the retinal explant with a timing that paralleled that observed in vivo. In contrast, the density of photoreceptors or of starburst amacrine cells increased, mimicking the evolution of these cell populations in vivo. Blockade of neural activity with tetrodotoxin increased the number of surviving Brn3a-labelled neurons in the retinal explant, as did the increase in target availability when one retinal explant was confronted with 2 or 4 collicular slices. Thus, this ex vivo model reproduces the developmental reduction of RGCs and recapitulates its regulation by neural activity and target availability. It therefore offers a simple way to analyze developmental cell death in this classic system. Using this model, we show that ephrin-A signaling does not participate to the regulation of the Brn3a population size in the retina, indicating that eprhin-A-mediated elimination of exuberant projections does not involve developmental cell death

    Chemotherapy-Induced Late Transgenerational Effects in Mice

    Get PDF
    To our knowledge, there is no report on long-term reproductive and developmental side effects in the offspring of mothers treated with a widely used chemotherapeutic drug such as doxorubicin (DXR), and neither is there information on transmission of any detrimental effects to several filial generations. Therefore, the purpose of the present paper was to examine the long-term effects of a single intraperitoneal injection of DXR on the reproductive and behavioral performance of adult female mice and their progeny. C57BL/6 female mice (generation zero; G0) were treated with either a single intraperitoneal injection of DXR (G0-DXR) or saline (G0-CON). Data were collected on multiple reproductive parameters and behavioral analysis for anxiety, despair and depression. In addition, the reproductive capacity and health of the subsequent six generations were evaluated. G0-DXR females developed despair-like behaviors; delivery complications; decreased primordial follicle pool; and early lost of reproductive capacity. Surprisingly, the DXR-induced effects in oocytes were transmitted transgenerationally; the most striking effects being observed in G4 and G6, constituting: increased rates of neonatal death; physical malformations; chromosomal abnormalities (particularly deletions on chromosome 10); and death of mothers due to delivery complications. None of these effects were seen in control females of the same generations. Long-term effects of DXR in female mice and their offspring can be attributed to genetic alterations or cell-killing events in oocytes or, presumably, to toxicosis in non-ovarian tissues. Results from the rodent model emphasize the need for retrospective and long-term prospective studies of survivors of cancer treatment and their offspring

    Simplified automatic method for measuring the visual field using the perimeter ZERK 1

    Get PDF
    Background: Currently available perimeters have limited capabilities of performing measurements of the visual field in children. In addition, they do not allow for fully automatic measurement even in adults. The patient in each case (in any type of perimeter) has at his disposal a button which he uses to indicate that he has seen a light stimulus. Such restrictions have been offset in the presented new perimeter ZERK 1. Methods: The paper describes a new type of automated, computerized perimeter designed to test the visual field in children and adults. The new perimeter and proprietary software enable to carry out tests automatically (without the need to press any button). The presented full version of the perimeter has been tested on a head phantom. The next steps will involve clinical trials and a comparison with measurements obtained using other types of perimeters. Results: The perimeter ZERK 1 enables automatic measurement of the visual field in two axes (with a span of 870 mm and a depth of 525 mm) with an accuracy of not less than 1o (95 LEDs on each arm) at a typical position of the patient's head. The measurement can be carried out in two modes: default/typical (lasting about 1 min), and accurate (lasting about 10 min). Compared with available and known types of perimeters, it has an open canopy, proprietary software and cameras tracking the eye movement, automatic control of fixation points, light stimuli with automatically preset light stimulus intensity in the following ranges: 550-700 mcd (red 620-630 nm), 1100-1400 mcd (green 515-530 nm), 200-400 mcd (blue 465-475 nm). Conclusions: The paper presents a new approach to the construction of perimeters based on automatic tracking of the eye movements in response to stimuli. The unique construction of the perimeter and the software allow for its mobile use in the examination of children and bedridden patients
    corecore