202 research outputs found

    Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space

    Full text link
    The problem of the invariant classification of the orthogonal coordinate webs defined in Euclidean space is solved within the framework of Felix Klein's Erlangen Program. The results are applied to the problem of integrability of the Calogero-Moser model

    Concircular tensors in Spaces of Constant Curvature: With Applications to Orthogonal Separation of The Hamilton-Jacobi Equation

    Full text link
    We study concircular tensors in spaces of constant curvature and then apply the results obtained to the problem of the orthogonal separation of the Hamilton-Jacobi equation on these spaces. Any coordinates which separate the geodesic Hamilton-Jacobi equation are called separable. Specifically for spaces of constant curvature, we obtain canonical forms of concircular tensors modulo the action of the isometry group, we obtain the separable coordinates induced by irreducible concircular tensors, and we obtain warped products adapted to reducible concircular tensors. Using these results, we show how to enumerate the isometrically inequivalent orthogonal separable coordinates, construct the transformation from separable to Cartesian coordinates, and execute the Benenti-Eisenhart-Kalnins-Miller (BEKM) separation algorithm for separating natural Hamilton-Jacobi equations.Comment: Removed preamble and references to unpublished articles. Also made some minor changes in the bod

    Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature

    Full text link
    We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory revolves around a special type of conformal Killing tensor, hereafter called a concircular tensor. First, we show how to extend original results given by Benenti to intrinsically characterize all (orthogonal) separable coordinates in spaces of constant curvature using concircular tensors. This results in the construction of a special class of separable coordinates known as Kalnins-Eisenhart-Miller coordinates. Then we present the Benenti-Eisenhart-Kalnins-Miller separation algorithm, which uses concircular tensors to intrinsically search for Kalnins-Eisenhart-Miller coordinates which separate a given natural Hamilton-Jacobi equation. As a new application of the theory, we show how to obtain the separable coordinate systems in the two dimensional spaces of constant curvature, Minkowski and (Anti-)de Sitter space. We also apply the Benenti-Eisenhart-Kalnins-Miller separation algorithm to study the separability of the three dimensional Calogero-Moser and Morosi-Tondo systems
    corecore