202 research outputs found

    The red cell storage lesion and therapeutic blood transfusion in the critically ill patient

    Get PDF
    1.1 BACKGROUND Anaemia is a common finding in critically ill patients. Currently, the transfusion of stored blood is the only treatment available to most patients. Despite this reliance on blood transfusion there is a marked lack of data about both the efficacy of red cell transfusion products and the clinical situations in which they are likely to be effective. It has recently been suggested that red blood cell (RBC) transfusions may have detrimental effects in critically ill patients and that these effects may be related to the transfusion of stored RBCs in particular. It is well recognised that RBCs undergo many metabolic and structural changes during refrigerated storage, these changes are termed the red cell storage lesion. The clinical implications of the red cell storage lesion are not known.1.2 AIM To assess the implications of the red cell storage lesion of the current UK RBC product, namely leucodepleted RBCs stored in saline-adenine-glucose-mannitol additive solution, using a combination of in vitro and in vivo studies.1.3 Methods 1. The quality of the current RBC product was assessed using in-vitro assays of RBC oxygenation/de-oxygenation, namely P50 and the 2,3 diphosphoglycerate concentration, and RBC deformability. || 2. Radiolabel studies were performed to determine the 24 and 48-hour recovery of stored allogeneic blood in critically ill patients. || 3. The in-vivo regeneration of red cell 2,3 diphophoglycerate (2,3 DPG) in stored blood transfused to critically ill patients was investigated. || 4. Antigenic differences between donor and recipient were used to track allogeneic RBCs following therapeutic transfusions to determine RBC survival using a nonradioisotopic technique.1.4 RESULTS 1. In-vitro tests showed that current collection processing and storage procedures: (a) Result in a very rapid reduction in red cell 2,3 DPG concentration. Approximately 50% of 2,3 DPG had been lost by day 2 of storage and it was barely detectable by day 14. The in-vitro Ps0 also decreased rapidly during storage; the time-frame of the decrease matched that of the decrease in 2,3 DPG. || (b) Result in a slight reduction in red cell deformability. 2. The current red cell product, stored for between 10 to 29 days, had a mean 24-hour recovery of 91% in critically ill patients. || 3. Following transfusion to critically ill patients stored blood rapidly regenerated 2,3 DPG. || 4. Red cell antigens were used to track allogeneic red cells for up to 12 weeks post¬ transfusion. The estimated median red cell lifespan was 104 days (range 86 to 124 days).1.5 CONCLUSIONS Current red cell storage methods fail to maintain red cell 2,3 DPG and result in a loss of red cell deformability. Although 2,3 DPG regeneration was found to occur rapidly it still took 24 to 72 hours for levels to approach normal; whether or not this is clinically significant is not known.The current UK red blood cell product has good short-term and long-term survival characteristics following therapeutic transfusion

    Tetraamine Me6TREN induced monomerization of alkali metal borohydrides and aluminohydrides

    Get PDF
    Monomeric 1:1 complexes of MEH4 (M, E = Li, B, 1; Na, B, 2; Li, Al, 3; Na, Al, 4) and the tripodal tetradentate ligand (Me2NCH2CH2)3N (Me6TREN) have been prepared in good yields by refluxing in THF and allowing the solutions to cool slowly. X-ray diffraction studies show that the BH4 group binds to either Li or Na via three hydride bridges while the AlH4 group connects to Li via a single hydride bridge. Surprisingly, Me6TREN·LiAlH4 represents the first monomeric contacted ion pair LiAlH4 derivative to be structurally characterized. In every case the tetraamine coordinates via all four of its Lewis basic nitrogen atoms. A similar protocol using the alkyl-rich borohydride MBEt3H also gives monomeric species (M = Li, 5; Na, 6). All complexes have been characterized in solution by multinuclear (1H, 7Li, 11B, 13C and 27Al, where appropriate) NMR spectroscopy which reveals excellent textbook examples of 1J coupling between B/Al and H in the cases of complexes 1-4 and between B and C in the cases of complexes 5 and 6

    Lithium dihydropyridine dehydrogenation catalysis : a group 1 approach to cyclisation of diamine-boranes

    Get PDF
    In reactions restricted previously to a ruthenium catalyst, a 1-lithium-2-alkyl-1,2-dihydropyridine complex is shown to be a competitive alternative dehydrogenation catalyst for the transformation of diamine boranes to cyclic 1,3,2-diazaborolidines, which can in turn be smoothly arylated in good yields. This study establishes the conditions and solvent dependence of the catalysis via NMR monitoring, with mechanistic insight provided by NMR (including DOSY) experiments and X-ray crystallographic studies of several model lithio intermediates

    Exposing elusive cationic magnesium-chloro aggregates in aluminate complexes through donor control

    Get PDF
    The cationic magnesium moiety of magnesium organohalo aluminate complexes, relevant to rechargeable Mg battery electrolytes, typically takes the thermodynamically favourable dinuclear [Mg2Cl3]+ form in the solid-state. We now report that judicious choice of Lewis donor allows the deliberate synthesis and isolation of the hitherto only postulated mononuclear [MgCl]+ and trinuclear [Mg3Cl5]+ modifications, forming a comparable series with a common aluminate anion [(Dipp)(Me3Si)NAlCl3]. By pre-forming the Al-N bond prior to introduction of the Mg source, a consistently reproducible protocol is reported. Usage of the green solvent 2-methyltetrahydrofuran in place of THF in the context of Mg/Al battery electrolyte type complexes is also promoted

    Accessible heavier s-block dihydropyridines : structural elucidation and reactivity of isolable molecular hydride sources

    Get PDF
    The straightforward metathesis of 1-lithio-2-tbutyl-1,2-dihydropyridine using metal tert-butoxide (Na/K) has resulted in the first preparation and isolation of a series of heavier alkali metal dihydropyridines. By employing donors, TMEDA, PMDETA and THF, five new metallodihydropyridine compounds were isolated and fully characterised. Three distinct structural motifs have been observed; a dimer, a dimer of dimers and a novel polymeric dihydropyridylpotassium compound, and the influence of cation π-interactions therein has been discussed. Thermal volatility analysis has shown that these complexes have the potential to be used as simple isolable sodium or potassium hydride surrogates, which is confirmed in test reactions with benzophenone

    Developing lithium chemistry of 1,2-dihydropyridines : from kinetic intermediates to isolable characterized compounds

    Get PDF
    Generally considered kinetic intermediates in addition reactions of alkyllithiums to pyridine, 1-lithio-2-alkyl-1,2-dihydropyridines have been rarely isolated or characterized. This study develops their "isolated" chemistry. By a unique stoichiometric (that is 1:1, alkyllithium:pyridine ratios) synthetic approach using tridentate donors we show it is possible to stabilize and hence crystallize monomeric complexes where alkyl is tert-butyl. Theoretical calculations probing the donor-free parent tert-butyl species reveal 12 energetically similar stereoisomers in two distinct cyclotrimeric (LiN)3 conformations. NMR studies (including DOSY spectra) and thermal volatility analysis compare new sec-butyl and iso-butyl isomers showing the former is a hexane soluble efficient hydrolithiation agent converting benzophenone to lithium diphenylmethoxide. Emphasizing the criticalness of stoichiometry, reaction of nBuLi/Me6TREN with two equivalents of pyridine results in non-alkylated 1-lithio-1,4-dihydropyridine·Me6TREN and 2-n-butylpyridine, implying mechanistically the kinetic 1,2-n-butyl intermediate hydrolithiates the second pyridine

    Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex

    Get PDF
    Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies

    1-Alkali-metal-2-alkyl-1,2-dihydropyridines : soluble hydride surrogates for catalytic dehydrogenative coupling and hydroboration applications

    Get PDF
    Equipped with excellent hydrocarbon solubility, the lithium hydride surrogate 1-lithium-2-t-butyl-1,2-dihydropyridine (1tLi) functions as a precatalyst to convert Me2NH·BH3 to [NMe2BH2]2 (89% conversion) under competitive conditions (2.5 mol%, 60h, 80°C, toluene solvent) to that of previously reported LiN(SiMe3)2. Sodium and potassium dihydropyridine congeners produce similar high yields of [NMe2BH2]2 but require longer times. Switching the solvent to pyridine induces a remarkable change in the dehydrocoupling product ratio, with (NMe2)2BH favoured over [NMe2BH2]2 (e.g., 94%:2% for 1tLi). Demonstrating its versatility, precatalyst 1tLi was also successful in promoting hydroboration reactions between pinacolborane and a selection of aldehydes and ketones. Most reactions gave near quantitative conversion to the hydroborated products in 15 minutes, though sterically demanding carbonyl substrates require longer times. The mechanisms of these rare examples of group 1 metal catalysed processes are discussed

    Contrasting the Group 6 metal-metal bonding in sodium dichromate(II) and sodium dimolybdate(II) polymethyl complexes : synthetic, x-ray crystallographic and theoretical studies

    Get PDF
    Extending the class of group 6 metal-metal bonded methylate compounds supported by alkali metal counter-ions, the first sodium octamethylmolybdate(II) complex [(TMEDA)Na]4Mo2Me8 and heptamethylchromate(II) relations [(donor)Na]3Cr2Me7 (donor is TMEDA or TMCDA) are reported. The former was made by treating [(Et2O)Li]4Mo2Me8 with four equivalents of NaOtBu/TMEDA in ether; whereas the latter resulted from introducing TMEDA or TMCDA to ether solutions of octamethyldichromate [(Et2O)Na]4Cr2Me8. X-ray crystallography revealed [(TMEDA)Na]4Mo2Me8 is dimeric with square pyramidal Mo centres [including a short Mo–Mo interaction of 2.1403(3) Å] each with four methyl groups in a mutually eclipsed conformation. In dinuclear [(TMCDA)Na]3Cr2Me7 trigonal bi-pyramidal Cr centres each bond to three terminal methyl groups and one common Me bridge, that produces a strikingly short Cr–Cr contact of 1.9136(4) Å. Broken symmetry density functional theoretical calculations expose the multiconfigurational metal-metal bonding in these compounds with a Mo–Mo bond order of 3 computed for octamethylmolybdate(II). This is contrasted by the single Cr–Cr bond in heptamethylchromate(II) where the singlet ground state is derived by strong antiferromagnetic coupling between adjacent metal ions
    • …
    corecore