5 research outputs found

    Genetic and epigenetic profiling of BRCA1/2 in ovarian tumors reveals additive diagnostic yield and evidence of a genomic BRCA1/2 DNA methylation signature

    Get PDF
    Poly-ADP-ribose-polymerase inhibitor (PARPi) treatment is indicated for advanced-stage ovarian tumors with BRCA1/2 deficiency. The “BRCAness” status is thought to be attributed to a tumor phenotype associated with a specific epigenomic DNA methylation profile. Here, we examined the diagnostic impact of combined BRCA1/2 sequence, copy number, and promoter DNA methylation analysis, and evaluated whether genomic DNA methylation patterns can predict the BRCAness in ovarian tumors. DNA sequencing of 172 human tissue samples of advanced-stage ovarian adenocarcinoma identified 36 samples with a clinically significant tier 1/2 sequence variants (point mutations and in/dels) and 9 samples with a CNV causing a loss of function in BRCA1/2. DNA methylation analysis of the promoter of BRCA1/2 identified promoter hypermethylation of BRCA1 in two mutation-negative samples. Computational modeling of genome-wide methylation markers, measured using Infinium EPIC arrays, resulted in a total accuracy of 0.75, sensitivity: 0.83, specificity: 0.64, positive predictive value: 0.76, negative predictive value: 0.74, and area under the receiver’s operating curve (AUC): 0.77, in classifying tumors harboring a BRCA1/2 defect from the rest. These findings indicate that the assessment of CNV and promoter DNA methylation in BRCA1/2 increases the cumulative diagnostic yield by 10%, compared with the 20% yield achieved by sequence variant analysis alone. Genomic DNA methylation data can partially predict BRCAness in ovarian tumors; however, further investigation in expanded BRCA1/2 cohorts is needed, and the effect of other double strand DNA repair gene defects in these tumors warrants further investigations

    p53 immunohistochemistry in endometrial cancer:clinical and molecular correlates in the PORTEC-3 trial

    Get PDF
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC)

    Implementation of an NGS‐based sequencing and gene fusion panel for clinical screening of patients with suspected hematologic malignancies

    No full text
    The diagnosis of hematologic malignancies integrates multiple diagnostic and clinical disciplines. Historically, targeted (single-analyte) genetic testing has been used as reflex to initial prescreening by other diagnostic modalities including flow cytometry, anatomic pathology, and clinical cytogenetics. Given the wide range of mutations associated with hematologic malignancies a DNA/RNA-based NGS panel can provide a more effective and economical approach to comprehensive testing of patients as an initial, tier-1 screen. Using a cohort of 380 patients, we performed clinical validation of a gene panel designed to assess 40 genes (DNA), and 29 fusion driver genes with over 600 gene fusion partners (RNA), including sample exchange data across three clinical laboratories, and correlation with cytogenetic testing results. The clinical validation of this technology demonstrated that its accuracy, sensitivity, and specificity are comparable to the majority of targeted single-gene approaches, while assessment of the initial patient cohort data demonstrated a high diagnostic yield of 50.5%. Implementation of a tier-1 NGS-based protocol for gene panel screening provides a comprehensive alternative to targeted molecular testing in patients with suspected hematologic malignancies, with increased diagnostic yield, scalability, reproducibility, and cost effectiveness, making it ideally suited for implementation in clinical laboratories

    p53 immunohistochemistry in endometrial cancer: clinical and molecular correlates in the PORTEC-3 trial

    No full text
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC).</p

    p53 immunohistochemistry in endometrial cancer: clinical and molecular correlates in the PORTEC-3 trial

    Get PDF
    Standard molecular classification of endometrial cancers (EC) is now endorsed by the WHO and identifies p53-abnormal (p53abn) EC as the subgroup with the poorest prognosis and the most likely to benefit from adjuvant chemo(radio)therapy. P53abn EC are POLE wildtype, mismatch repair proficient and show abnormal immunohistochemical (IHC) staining for p53. Correct interpretation of routinely performed p53 IHC has therefore become of paramount importance. We aimed to comprehensively investigate abnormal p53 IHC patterns and their relation to clinicopathological and molecular features. Tumor material of 411 molecularly classified high-risk EC from consenting patients from the PORTEC-3 clinical trial were collected. p53 IHC was successful in 408 EC and was considered abnormal when the tumor showed a mutant expression pattern (including subclonal): overexpression, null or cytoplasmic. The presence of pathogenic mutations was determined by next generation sequencing (NGS). Abnormal p53 expression was observed in 131/408 (32%) tumors. The most common abnormal p53 IHC pattern was overexpression (n = 89, 68%), followed by null (n = 12, 9%) and cytoplasmic (n = 3, 2%). Subclonal abnormal p53 staining was observed in 27 cases (21%), which was frequently but not exclusively, associated with POLE mutations and/or MMRd (n = 22/27; p < 0.001). Agreement between p53 IHC and TP53 NGS was observed in 90.7%, resulting in a sensitivity and specificity of 83.6% and 94.3%, respectively. Excluding POLEmut and MMRd EC, as per the WHO-endorsed algorithm, increased the accuracy to 94.5% with sensitivity and specificity of 95.0% and 94.1%, respectively. Our data shows that awareness of the abnormal p53 IHC patterns are prerequisites for correct EC molecular classification. Subclonal abnormal p53 expression is a strong indicator for POLEmut and/or MMRd EC. No significant differences in clinical outcomes were observed among the abnormal p53 IHC patterns. Our data support use of the WHO-endorsed algorithm and combining the different abnormal p53 IHC patterns into one diagnostic entity (p53abn EC)
    corecore