2,968 research outputs found

    Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity

    Get PDF
    Neptune's largest satellite, Triton, is one of the most fascinating and enigmatic bodies in the solar system. Among its numerous interesting traits, Triton appears to have far fewer craters than would be expected if its surface was primordial. Here we combine the best available crater count data for Triton with improved estimates of impact rates by including the Kuiper Belt as a source of impactors. We find that the population of impactors creating the smallest observed craters on Triton must be sub-km in scale, and that this small-impactor population can be best fit by a differential power-law size index near -3. Such results provide interesting, indirect probes of the unseen small body population of the Kuiper Belt. Based on the modern, Kuiper Belt and Oort Cloud impactor flux estimates, we also recalculate estimated ages for several regions of Triton's surface imaged by Voyager 2, and find that Triton was probably active on a time scale no greater than 0.1-0.3 Gyr ago (indicating Triton was still active after some 90% to 98% of the age of the solar system), and perhaps even more recently. The time-averaged volumetric resurfacing rate on Triton implied by these results, 0.01 km3^3 yr−1^{-1} or more, is likely second only to Io and Europa in the outer solar system, and is within an order of magnitude of estimates for Venus and for the Earth's intraplate zones. This finding indicates that Triton likely remains a highly geologically active world at present, some 4.5 Gyr after its formation. We briefly speculate on how such a situation might obtain.Comment: 14 pages (TeX), plus 2 postscript figures Stern & McKinnon, 2000, AJ, in pres

    The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt

    Get PDF
    The New Horizons spacecraft’s encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU₆₉) revealed a contact-binary planetesimal. We investigate how Arrokoth formed, finding it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly due to dynamical friction and collisions within the cloud or later gas drag. Arrokoth’s contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt, so informs the accretion processes that operated in the early Solar System

    Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    Get PDF
    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    Experimental study of digital image processing techniques for LANDSAT data

    Get PDF
    The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections

    Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede

    Get PDF
    Prominent crater chains on Ganymede and Callisto are most likely the impact scars of comets tidally disrupted by Jupiter and are not secondary crater chains. We have examined the morphology of these chains in detail in order to place constraints on the properties of the comets that formed them and the disruption process. In these chains, intercrater spacing varies by no more than a factor of 2 and the craters within a given chain show almost no deviation from linearity (although the chains themselves are on gently curved small circles). All of these crater chains occur on or very near the Jupiter-facing hemisphere. For a given chain, the estimated masses of the fragments that formed each crater vary by no more than an order of magnitude. The mean fragment masses for all the chains vary by over four orders of magnitude (W. B. McKinnon and P. M. Schenk 1995, Geophys. Res. Lett. 13, 1829-1832), however. The mass of the parent comet for each crater chain is not correlated with the number of fragments produced during disruption but is correlated with the mean mass of the fragments produced in a given disruption event. Also, the larger fragments are located near the center of each chain. All of these characteristics are consistent with those predicted by disruption simulations based on the rubble pile cometary nucleus model (in which nuclei are composed on numerous small fragments weakly bound by self-gravity), and with those observed in Comet D/Shoemaker-Levy 9. Similar crater chains have not been found on the other icy satellites, but the impact record of disrupted comets on Callisto and Ganymede indicates that disruption events occur within the Jupiter system roughly once every 200 to 400 years

    Self-aligned fabrication process for silicon quantum computer devices

    Full text link
    We describe a fabrication process for devices with few quantum bits (qubits), which are suitable for proof-of-principle demonstrations of silicon-based quantum computation. The devices follow the Kane proposal to use the nuclear spins of 31P donors in 28Si as qubits, controlled by metal surface gates and measured using single electron transistors (SETs). The accurate registration of 31P donors to control gates and read-out SETs is achieved through the use of a self-aligned process which incorporates electron beam patterning, ion implantation and triple-angle shadow-mask metal evaporation

    Profile instabilities of the millisecond pulsar PSR J1022+1001

    Get PDF
    We present evidence that the integrated profiles of some millisecond pulsars exhibit severe changes that are inconsistent with the moding phenomenon as known from slowly rotating pulsars. We study these profile instabilities in particular for PSR J1022+1001 and show that they occur smoothly, exhibiting longer time constants than those associated with moding. In addition, the profile changes of this pulsar seem to be associated with a relatively narrow-band variation of the pulse shape. Only parts of the integrated profile participate in this process which suggests that the origin of this phenomenon is intrinsic to the pulsar magnetosphere and unrelated to the interstellar medium. A polarization study rules out profile changes due to geometrical effects produced by any sort of precession. However, changes are observed in the circularly polarized radiation component. In total we identify four recycled pulsars which also exhibit instabilities in the total power or polarization profiles due to an unknown phenomenon (PSRs J1022+1001, J1730-2304, B1821-24, J2145-0750). The consequences for high precision pulsar timing are discussed in view of the standard assumption that the integrated profiles of millisecond pulsars are stable. As a result we present a new method to determine pulse times-of-arrival that involves an adjustment of relative component amplitudes of the template profile. Applying this method to PSR J1022+1001, we obtain an improved timing solution with a proper motion measurement of -17 \pm 2 mas/yr in ecliptic longitude. Assuming a distance to the pulsar as inferred from the dispersion measure this corresponds to an one-dimensional space velocity of 50 km/s.Comment: 29 pages, 12 figures, accepted for publication in Ap
    • …
    corecore