3 research outputs found

    Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene <it>Sasa-UBA </it>in addition to a soluble MHC class I molecule, <it>Sasa-ULA</it>. A pseudolocus for <it>Sasa-UCA </it>was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region.</p> <p>Results</p> <p>The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, <it>ZAA</it>. The IB region was extended with 350 kb including three new Z-lineage loci, <it>ZBA</it>, <it>ZCA </it>and <it>ZDA </it>in addition to a <it>UGA </it>locus. An allelic version of the IB region contained a functional <it>UDA </it>locus in addition to the <it>UCA </it>pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus <it>SAA </it>(previously known as <it>UAA</it>) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of <it>UBA </it>being dominantly expressed in gut, spleen and gills, and <it>ZAA </it>with high expression in blood.</p> <p>Conclusion</p> <p>Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (<it>UBA</it>), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.</p

    Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Atlantic salmon (<it>Salmo salar</it>) immunoglobulin heavy chain (<it>IgH</it>) locus possesses two parallel <it>IgH </it>isoloci (<it>IGH-A </it>and <it>IGH-B</it>), that are related to the genomic duplication event in the family Salmonidae. These duplicated <it>IgH </it>loci in Atlantic salmon provide a unique opportunity to examine the mechanisms of genome diversity and genome evolution of the <it>IgH </it>loci in vertebrates. In this study, we defined the structure of these loci in Atlantic salmon, and sequenced 24 bacterial artificial chromosome (BAC) clones that were assembled into the <it>IGH-A </it>(1.1 Mb) and <it>IGH-B </it>(0.9 Mb) loci. In addition, over 7,000 cDNA clones from the <it>IgH </it>variable (V<smcaps>H</smcaps>) region have been sequenced and analyzed.</p> <p>Results</p> <p>The present study shows that the genomic organization of the duplicated <it>IgH </it>loci in Atlantic salmon differs from that in other teleosts and other vertebrates. The loci possess multiple Cτ genes upstream of the Cμ region, with three of the Cτ genes being functional. Moreover, the duplicated loci possess over 300 V<smcaps>H</smcaps> segments which could be classified into 18 families. This is the largest number of V<smcaps>H</smcaps> families currently defined in any vertebrate. There were significant structural differences between the two loci, indicating that both <it>IGH-A </it>and <it>-B </it>loci have evolved independently in the short time after the recent genome duplication approximately 60 mya.</p> <p>Conclusions</p> <p>Our results indicate that the duplication of the <it>IgH </it>loci in Atlantic salmon significantly contributes to the increased diversity of the antibody repertoire, as compared with the single <it>IgH </it>locus in other vertebrates.</p
    corecore