282 research outputs found

    The yin and yang of Fcγ receptors in ITP

    Get PDF
    The Fcγ receptors contribute to the susceptibility to autoimmune diseases such as ITP in several ways: (1) they modulate dendritic cell antigen processing and presentation, (2) they modulate antibody production by B cells, and (3) they participate in effector cell functions, such as phagocytosis, antibody-dependent cellular cytotoxicity, and mediator release. The key finding in recent years has been the appreciation that the activating Fcγ receptors, encoded by FCGR2A, -2C, -3A, and -3B, compete with the inhibitory Fcγ receptor, encoded by FCGR2B, to determine cellular responses to immune complexes and antibody-coated cells

    Advances in the pathophysiology and treatment of heparin-induced thrombocytopenia.

    Get PDF
    PURPOSE OF REVIEW: To review the recent developments in understanding the pathophysiology of heparin-induced thrombocytopenia (HIT) and in applying this knowledge to the treatment of patients with suspected and proven HIT. RECENT FINDINGS: HIT pathophysiology is dynamic and complex. HIT pathophysiology is initiated by four essential components--heparin (Hep), platelet factor 4 (PF4), IgG antibodies against the Hep-PF4 complex, and platelet FcγRIIa. HIT is propagated by activated platelets, monocytes, endothelial cells, and coagulation proteins. Insights into the unique HIT antibody response continue to emerge, but without consensus as to the relative roles of B cells, T cells, and antigen-presenting cells. Platelet activation via FcγRIIa, the sine qua non of HIT, has become much better appreciated. Therapy remains challenging for several reasons. Suspected HIT is more frequent than proven HIT, because of the widespread use of Hep and the inadequacies of current diagnostic tests and scoring systems. In proven HIT, approved treatments reduce but do not eliminate thrombosis, and have substantial bleeding risk. Rational novel therapeutic strategies, directed at the initiating steps in HIT pathophysiology and with potential combinations staged over time, are in various phases of development. SUMMARY: Progress continues in understanding the breadth of molecular and cellular players in HIT. Translation to improved diagnosis and treatment is needed

    Sickle Cell Disease and Variation in the PAR4 Receptor

    Get PDF
    Sickle cell disease disproportionately affects African Americans in the U.S. Much can still be learned regarding determinants of frequency and severity of painful vaso-occlusive episodes in these patients. It has been reported that a variant in PAR4 (protease-activated receptor 4) has a unique distribution among African Americans. One variant (Thr120) is hyperactive, while the other (Ala120) is hypoactive. This receptor is present on platelets, vascular cells, and nociceptors. We wish ultimately to test the hypothesis that sickle cell patients with the hyperactive PAR4 receptor have greater pain severity. A genotype-phenotype correlation would have prognostic value. An adequately powered study to test this hypothesis would need to be multicenter. Therefore this is an ongoing pilot feasibility study to 1) Determine whether a sufficient number of sickle cell patients will consent to a focused genotype study; 2) Test if the current electronic health record (EHR) can be queried for an accurate depiction of sickle cell-related pain treatment; and 3) Collect single-center data on the genotype-phenotype correlation that can later be expanded to a multi-center study. 7/18 patients asked have consented to be in the study, the EHR in 5/7 enrolled has matched self-reported healthcare visits for vaso-occlusive episodes, and genetic studies are not being conducted until there are adequate numbers of samples. These in-progress results indicate patients will consent at an acceptable frequency and that the EHR is useful in objectively categorizing pain-severity phenotypes. Regardless of the date from the genetic component, preliminary results suggest a multi-center study could be productive

    GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets.

    Get PDF
    G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5\u27-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation

    CalDAG-GEFI deficiency protects mice in a novel model of FcγRIIA-mediated thrombosis and thrombocytopenia

    Get PDF
    Platelet activation via Fcγ receptor IIA (FcγRIIA) is a critical event in immune-mediated thrombocytopenia and thrombosis syndromes (ITT). We recently identified signaling by the guanine nucleotide exchange factor CalDAG-GEFI and the adenosine diphosphate receptor P2Y12 as independent pathways leading to Rap1 small GTPase activation and platelet aggregation. Here, we evaluated the contribution of CalDAG-GEFI and P2Y12 signaling to platelet activation in ITT. Mice transgenic for the human FcγRIIA (hFcR) and deficient in CalDAG-GEFI(−/−) (hFcR/CDGI(−/−)) were generated. Compared with controls, aggregation of hFcR/CDGI(−/−) platelets or P2Y12 inhibitor-treated hFcR platelets required more than 5-fold and approximately 2-fold higher concentrations of a FcγRIIA stimulating antibody against CD9, respectively. Aggregation and Rap1 activation were abolished in P2Y12 inhibitor-treated hFcR/CDGI(−/−) platelets. For in vivo studies, a novel model for antibody-induced thrombocytopenia and thrombosis was established. FcγRIIA-dependent platelet thrombosis was induced by infusion of Alexa750-labeled antibodies to glycoprotein IX (CD42a), and pulmonary thrombi were detected by near-infrared imaging technology. Anti-GPIX antibodies dose-dependently caused thrombocytopenia and pulmonary thrombosis in hFcR-transgenic but not wild-type mice. CalDAG-GEFI-deficient but not clopidogrel-treated hFcR-transgenic mice were completely protected from ITT. In summary, we established a novel mouse model for ITT, which was used to identify CalDAG-GEFI as a potential new target in the treatment of ITT

    Species Differences in Platelet Protease-Activated Receptors

    Get PDF
    Protease-activated receptors (PARs) are a class of integral membrane proteins that are cleaved by a variety of proteases, most notably thrombin, to reveal a tethered ligand and promote activation. PARs are critical mediators of platelet function in hemostasis and thrombosis, and therefore are attractive targets for anti-platelet therapies. Animal models studying platelet PAR physiology have relied heavily on genetically modified mouse strains, which have provided ample insight but have some inherent limitations. The current review aims to summarize the notable PAR expression and functional differences between the mouse and human, in addition to highlighting some recently developed tools to further study human physiology in mouse models

    Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    Get PDF
    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis

    The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome.

    Get PDF
    BACKGROUND: For the anucleate platelet it has been unclear how well platelet transcriptomes correlate among different donors or across different RNA profiling platforms, and what the transcriptomes\u27 relationship is with the platelet proteome. We profiled the platelet transcriptome of 10 healthy young males (5 white and 5 black) with no notable clinical history using RNA sequencing and by Affymetrix microarray. RESULTS: We found that the abundance of platelet mRNA transcripts was highly correlated across the 10 individuals, independently of race and of the employed technology. Our RNA-seq data showed that these high inter-individual correlations extend beyond mRNAs to several categories of non-coding RNAs. Pseudogenes represented a notable exception by exhibiting a difference in expression by race. Comparison of our mRNA signatures to a publicly available quantitative platelet proteome showed that most (87.5%) identified platelet proteins had a detectable corresponding mRNA. However, a high number of mRNAs that were present in the transcriptomes of all 10 individuals had no representation in the proteome. Spearman correlations of the relative abundances for those genes represented by both an mRNA and a protein showed a weak (~0.3) connection. Further analysis of the overlapping and non-overlapping platelet mRNAs and proteins identified gene groups corresponding to distinct cellular processes. CONCLUSIONS: The results of our analyses provide novel insights for platelet biology, show only a weak connection between the platelet transcriptome and proteome, and indicate that it is feasible to assemble a platelet mRNA-ome that can serve as a reference for future platelet transcriptomic studies of human health and disease. REVIEWED BY: This article was reviewed by Dr Mikhail Dozmorov (nominated by Dr Yuri Gusev), Dr Neil Smalheiser and Dr Eugene Koonin

    Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on HemostasisHighlights

    Get PDF
    OBJECTIVE: The tight regulation of platelet adhesiveness, mediated by the αIIbβ3 integrin, is critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-GEFI leads to protection from thrombosis without pathological bleeding in mice. APPROACH AND RESULTS: Cdg1(low) mice were generated by knockin of human CD-GEFI cDNA into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1(low) mice was reduced by ≈90% when compared with controls. Activation of RAP1 and αIIbβ3 was abolished at low agonist concentrations and partially inhibited at high agonist concentrations in Cdg1(low) platelets. Consistently, the aggregation response of Cdg1(low) platelets was weaker than that of wild-type platelets, but more efficient than that observed in Cdg1(-/-) platelets. Importantly, Cdg1(low) mice were strongly protected from arterial and immune complex-mediated thrombosis, with only minimal impact on primary hemostasis. CONCLUSIONS: Together, our studies suggest the partial inhibition of CD-GEFI function as a powerful new approach to safely prevent thrombotic complications
    • …
    corecore