9 research outputs found

    Satellite cell behavior in cyclists following intensified training with and without protein supplementation

    Get PDF
    PURPOSE: The objectives were to determine the satellite cell (SC) response among endurance-trained cyclists (n=8; VO2max: 63.1 ± 8.4 mL/Kg/min)to a period of intensified training (ICT) (10 days) and 10 days of recovery (RVT), with and without protein supplementation. METHODS: Muscle biopsies were obtained from the vastus lateralis prior to- and immediately following ICT and RVT. Fluorescent microscopy was used to analyze SCs and myosin heavy chain I and IIa (MHC I and IIa). Data were analyzed using magnitude-based inferences. RESULTS: MHC I SCs were exceptionally abundant at baseline (38 ± 20 SCs/100 fibers). MHC I SC count decreased (unclear) from PreCHO to ICTCHO and then likely increased by 60 ± 64 percent following RecCHO , with no other differences in SC content regardless of nutrition or training phase. Myonuclear content of MHC I fibers most likely increased by 16 ± 6 percent from baseline to ICTCHO and likely remained higher (17 ± 15 percent) than baseline following recovery. Likewise, MHC IIa myonuclear content likely increased 14 ± 14 percent from PreCHO to RecCHO. Though there were no changes in fiber size (cross sectional area) under CHO conditions, MHC I fiber size very likely increased by 14 ± 8 percent and MHC IIa fiber size likely increased by 16 ± 19 percent with PRO supplementation. CONCLUSIONS: Trained endurance cyclists possess a relatively large pool of SCs that appeared to facilitate measurable myonuclear accretion with heavy training under carbohydrate conditions. . Also, based on the muscle fiber hypertrophy and lack of other apparent physiological changes, PRO supplementation appeared to benefit skeletal muscle. These data strengthen the growing body of evidence demonstrating the non-hypertrophic role of SCs in skeletal muscle

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Fiber Type-Specific Satellite Cell Content in Cyclists Following Heavy Training With Carbohydrate and Carbohydrate-Protein Supplementation

    Get PDF
    The central purpose of this study was to evaluate the fiber type-specific satellite cell and myonuclear responses of endurance-trained cyclists to a block of intensified training, when supplementing with carbohydrate (CHO) vs. carbohydrate-protein (PRO). In a crossover design, endurance-trained cyclists (n=8) performed two consecutive training periods, once supplementing with CHO (de facto ‘control’ condition) and the other with PRO. Each training period consisted of 10 days of intensified cycle training (ICT – 120% increase in average training duration) followed by 10 days of recovery (RVT – reduced volume training; 33% volume reduction vs. normal training). Skeletal muscle biopsies were obtained from the vastus lateralis before and after ICT and again following RVT. Immunofluorescent microscopy was used to quantify SCs (Pax7+), myonuclei (DAPI+), and myosin heavy chain I (MyHC I). Data are expressed as percent change ± 90% confidence limits. The 10-day block of ICTCHO increased MyHC I SC content (35 ± 28%) and myonuclear density (16 ± 6%), which remained elevated following RVTCHO (SC = 69 ± 50% vs. PRE; Nuclei = 17 ± 15% vs. PRE). MyHC II SC and myonuclei were not different following ICTCHO, but were higher following RVTCHO (SC = +33 ± 31% vs. PRE; Nuclei = 15 ± 14% vs. PRE), indicating a delayed response compared to MyHC I fibers. The MyHC I SC pool increased following ICTPRO (37 ± 37%), but without a concomitant increase in myonuclei. There were no changes in MyHC II SC or myonuclei following ICTPRO. Collectively, these trained endurance cyclists possessed a relatively large pool of SCs that facilitated rapid (MyHC I) and delayed (MyHC II) satellite cell proliferation and myonuclear accretion with CHO. The current findings strengthen the growing body of evidence demonstrating alterations in SC number without hypertrophy. SC pool expansion is typically viewed as an advantageous response to exercise. However, when coupled with our previous report that PRO possibly enhanced whole muscle recovery and increased MyHC I and II fiber size, the limited satellite cell/myonuclear response observed with carbohydrate-protein seem to indicate that protein supplementation was beneficial and may have minimized the necessity for satellite cell involvement

    Supplemental Protein during Heavy Cycling Training and Recovery Impacts Skeletal Muscle and Heart Rate Responses but Not Performance

    No full text
    The effects of protein supplementation on cycling performance, skeletal muscle function, and heart rate responses to exercise were examined following intensified (ICT) and reduced-volume training (RVT). Seven cyclists performed consecutive periods of normal training (NT), ICT (10 days; average training duration 220% of NT), and RVT (10 days; training duration 66% of NT). In a crossover design, subjects consumed supplemental carbohydrate (CHO) or an equal amount of carbohydrate with added protein (CP) during and following each exercise session (CP = +0.94 g/kg/day protein during ICT; +0.39 g/kg/day during RVT). A 30-kilometer time trial performance (following 120 min at 50% Wmax) was modestly impaired following ICT (+2.4 ± 6.4% versus NT) and returned to baseline levels following RVT (−0.7 ± 4.5% versus NT), with similar responses between CHO and CP. Skeletal muscle torque at 120 deg/s benefited from CP, compared to CHO, following ICT. However, this effect was no longer present at RVT. Following ICT, muscle fiber cross-sectional area was increased with CP, while there were no clear changes with CHO. Reductions in constant-load heart rates (at 50% Wmax) following RVT were likely greater with CP than CHO (−9 ± 9 bpm). Overall it appears that CP supplementation impacted skeletal muscle and heart rate responses during a period of heavy training and recovery, but this did not result in meaningful changes in time trial performance

    Acute Effects of Cheddar Cheese Consumption on Circulating Amino Acids and Human Skeletal Muscle

    No full text
    Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    No full text
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design
    corecore