58 research outputs found

    Optical diffraction for measurements of nano-mechanical bending

    Get PDF
    Micromechanical transducers such as cantilevers for AFM often rely on optical readout methods that require illumination of a specific region of the microstructure. Here we explore and exploit the diffraction effects that have been previously neglected when modeling cantilever bending measurement techniques. The illumination of a cantilever end causes an asymmetric diffraction pattern at the photodetector that significantly affects the calibration of the signal in the popular optical beam deflection technique (OBDT). Conditions for optimized linear signals that avoid detection artifacts conflict with small numerical aperture illumination and narrow cantilevers which are softer and therefore more sensitive. Embracing diffraction patterns as a physical measurable allows a richer detection technique that decouples measurements of tilt and curvature and simultaneously relaxes the requirements on the alignment of illumination and detector. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the usefulness of these diffraction features. We offer experimental design guidelines and identify and quantify possible sources of systematic error of up to 10% in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where Frauenhofer and Bragg diffraction effects from finite sized and patterned cantilevers are exploited. Such effects are readily generalized to arrays, and allow transmission detection of mechanical curvature, enabling in-line instruments. In particular, a cantilever with a periodic array of slots produces Bragg peaks which can be analyzed to deduce the cantilever curvature. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin, with an RMS noise equivalent to less than 2.5μM2.5 \mu M (1.5 nm), as example of possible multi-maker bio-assays.Comment: 9 pages, 8 figure

    Exploring people’s candidacy for mobile health–supported HIV testing and care services in rural Kwazulu-Natal, South Africa: qualitative study

    Get PDF
    BACKGROUND: The use of mobile communication technologies (mHealth: mobile health) in chronic disease management has grown significantly over the years. mHealth interventions have the potential to decentralize access to health care and make it convenient, particularly in resource-constrained settings. It is against this backdrop that we aimed to codevelop (with potential users) a new generation of mobile phone-connected HIV diagnostic tests and Web-based clinical care pathways needed for optimal delivery of decentralized HIV testing, prevention, and care in low- and middle-income countries. OBJECTIVE: The aim of this study was to understand ways in which an mHealth intervention could be developed to overcome barriers to existing HIV testing and care services and promote HIV self-testing and linkage to prevention and care in a poor, HIV hyperendemic community in rural KwaZulu-Natal, South Africa. METHODS: A total of 54 in-depth interviews and 9 focus group discussions were conducted with potential users (including health care providers) in 2 different communities. Theoretically informed by the candidacy framework, themes were identified from the interview transcripts, manually coded, and thematically analyzed. RESULTS: Participants reported barriers, such as fear of HIV identity, stigma, long waiting hours, clinic space, and health care workers' attitudes, as major impediments to effective uptake of HIV testing and care services. People continued to reassess their candidacy for HIV testing and care services on the basis of their experiences and how they or others were treated within the health systems. Despite the few concerns raised about new technology, mobile phone-linked HIV testing was broadly acceptable to potential users (particularly men and young people) and providers because of its privacy (individual control of HIV testing over health provider-initiated testing), convenience (individual time and place of choice for HIV testing versus clinic-based testing), and time saving. CONCLUSIONS: Mobile phone-connected HIV testing and Web-based clinical care and prevention pathways have the potential to support access to HIV prevention and care, particularly for young people and men. Although mHealth provides a way for individuals to test their candidacy for HIV services, the barriers that can make the service unattractive at the clinic level will also need to be addressed if potential demand is to turn into actual demand

    Clinical Validation of a Rapid Variant-Proof RT-RPA Assay for the Detection of SARS-CoV-2

    Get PDF
    The COVID-19 pandemic has unveiled a pressing need to expand the diagnostic landscape to permit high-volume testing in peak demand. Rapid nucleic acid testing based on isothermal amplification is a viable alternative to real-time reverse transcription polymerase chain reaction (RT-PCR) and can help close this gap. With the emergence of SARS-CoV-2 variants of concern, clinical validation of rapid molecular tests needs to demonstrate their ability to detect known variants, an essential requirement for a robust pan-SARS-CoV-2 assay. To date, there has been no clinical validation of reverse transcription recombinase polymerase amplification (RT-RPA) assays for SARS-CoV-2 variants. We performed a clinical validation of a one-pot multi-gene RT-RPA assay with the E and RdRP genes of SARS-CoV-2 as targets. The assay was validated with 91 nasopharyngeal samples, with a full range of viral loads, collected at University College London Hospitals. Moreover, the assay was tested with previously sequenced clinical samples, including eleven lineages of SARS-CoV-2. The rapid (20 min) RT-RPA assay showed high sensitivity and specificity, equal to 96% and 97%, respectively, compared to gold standard real-time RT-PCR. The assay did not show cross-reactivity with the panel of respiratory pathogens tested. We also report on a semi-quantitative analysis of the RT-RPA results with correlation to viral load equivalents. Furthermore, the assay could detect all eleven SARS-CoV-2 lineages tested, including four variants of concern (Alpha, Beta, Delta, and Omicron). This variant-proof SARS-CoV-2 assay offers a significantly faster and simpler alternative to RT-PCR, delivering sensitive and specific results with clinical samples

    Self-Swabbing for Virological Confirmation of Influenza-Like Illness Among an Internet-Based Cohort in the UK During the 2014-2015 Flu Season: Pilot Study.

    Get PDF
    BACKGROUND: Routine influenza surveillance, based on laboratory confirmation of viral infection, often fails to estimate the true burden of influenza-like illness (ILI) in the community because those with ILI often manage their own symptoms without visiting a health professional. Internet-based surveillance can complement this traditional surveillance by measuring symptoms and health behavior of a population with minimal time delay. Flusurvey, the UK's largest crowd-sourced platform for surveillance of influenza, collects routine data on more than 6000 voluntary participants and offers real-time estimates of ILI circulation. However, one criticism of this method of surveillance is that it is only able to assess ILI, rather than virologically confirmed influenza. OBJECTIVE: We designed a pilot study to see if it was feasible to ask individuals from the Flusurvey platform to perform a self-swabbing task and to assess whether they were able to collect samples with a suitable viral content to detect an influenza virus in the laboratory. METHODS: Virological swabbing kits were sent to pilot study participants, who then monitored their ILI symptoms over the influenza season (2014-2015) through the Flusurvey platform. If they reported ILI, they were asked to undertake self-swabbing and return the swabs to a Public Health England laboratory for multiplex respiratory virus polymerase chain reaction testing. RESULTS: A total of 700 swab kits were distributed at the start of the study; from these, 66 participants met the definition for ILI and were asked to return samples. In all, 51 samples were received in the laboratory, 18 of which tested positive for a viral cause of ILI (35%). CONCLUSIONS: This demonstrated proof of concept that it is possible to apply self-swabbing for virological laboratory testing to an online cohort study. This pilot does not have significant numbers to validate whether Flusurvey surveillance accurately reflects influenza infection in the community, but highlights that the methodology is feasible. Self-swabbing could be expanded to larger online surveillance activities, such as during the initial stages of a pandemic, to understand community transmission or to better assess interseasonal activity

    Thermodynamic analysis of an entropically driven, high affinity nanobody-HIV p24 interaction

    Get PDF
    Protein-protein interactions are fundamental to life processes. Complementary computational, structural and biophysical studies of these interactions enable the forces behind their specificity and strength to be understood. Antibody fragments such as single-chain antibodies have the specificity and affinity of full antibodies but a fraction of their size, expediting whole molecule studies and distal effects without exceeding the computational capacity of modelling systems. We previously reported the crystal structure of a high affinity nanobody 59H10 bound to HIV-1 capsid protein p24, and deduced key interactions using all-atom molecular dynamics (MD) simulations. We studied the properties of closely-related medium (37E7) and low (48G11) affinity nanobodies, to understand how changes of three (37E7) or one (48G11) amino acids impacted these interactions, however, the contributions of enthalpy and entropy were not quantified. Here, we report the use of qualitative and quantitative experimental and in silico approaches to separate the contributions of enthalpy and entropy. We used complementary circular dichroism spectroscopy and molecular dynamics simulations to qualitatively delineate changes between nanobodies in isolation and complexed with p24. Using quantitative techniques such as isothermal titration calorimetry alongside WaterMap and Free Energy Perturbation protocols, we found the difference between high (59H10) and medium (37E7) affinity nanobodies on binding to HIV-1 p24 is entropically driven, accounted for by the release of unstable waters from the hydrophobic surface of 59H10. Our results provide an exemplar of the utility of parallel in vitro and in silico studies and highlight that differences in entropic interactions between amino acids and water molecules are sufficient to drive orders of magnitude differences in affinity

    Tracking COVID-19 using online search

    Get PDF
    Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupervised modelling techniques based on associated symptom categories identified by the United Kingdom's National Health Service and Public Health England. We then attempt to minimise an expected bias in these signals caused by public interest -- as opposed to infections -- using the proportion of news media coverage devoted to COVID-19 as a proxy indicator. Our analysis indicates that models based on online searches precede the reported confirmed cases and deaths by 16.7 (10.2 - 23.2) and 22.1 (17.4 - 26.9) days, respectively. We also investigate transfer learning techniques for mapping supervised models from countries where the spread of disease has progressed extensively to countries that are in earlier phases of their respective epidemic curves. Furthermore, we compare time series of online search activity against confirmed COVID-19 cases or deaths jointly across multiple countries, uncovering interesting querying patterns, including the finding that rarer symptoms are better predictors than common ones. Finally, we show that web searches improve the short-term forecasting accuracy of autoregressive models for COVID-19 deaths. Our work provides evidence that online search data can be used to develop complementary public health surveillance methods to help inform the COVID-19 response in conjunction with more established approaches.Comment: Published in Nature Digital Medicine. Please note that the published version differs from this preprin

    Automated phenotyping of mosquito larvae enables high-throughput screening for novel larvicides and offers potential for smartphone-based detection of larval insecticide resistance

    Get PDF
    Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides. By this means, we reliably quantified both time- and concentration-dependent actions of chemical insecticides faster than using the WHO standard larval assay. We illustrate the effectiveness of the system using an established larvicide (temephos) and demonstrate its capacity for library-scale chemical screening using the Medicines for Malaria Venture (MMV) Pathogen Box library. As a proof-of-principle, this library screen identified a compound, subsequently confirmed to be tolfenpyrad, as an effective larvicide. We have also used the INVAPP / Paragon system to compare responses in larvae derived from WHO classified deltamethrin resistant and sensitive mosquitoes. We show how this approach to monitoring larval response to insecticides can be adapted for use with a smartphone camera application and therefore has potential for further development as a simple portable field-assay with associated real-time, geo-located information to identify hotspots

    Modified Cantilever Arrays Improve Sensitivity and Reproducibility of Nanomechanical Sensing in Living Cells

    Get PDF
    Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries

    Who Owns the Data? Open Data for Healthcare.

    Get PDF
    Research on large shared medical datasets and data-driven research are gaining fast momentum and provide major opportunities for improving health systems as well as individual care. Such open data can shed light on the causes of disease and effects of treatment, including adverse reactions side-effects of treatments, while also facilitating analyses tailored to an individual's characteristics, known as personalized or "stratified medicine." Developments, such as crowdsourcing, participatory surveillance, and individuals pledging to become "data donors" and the "quantified self" movement (where citizens share data through mobile device-connected technologies), have great potential to contribute to our knowledge of disease, improving diagnostics, and delivery of -healthcare and treatment. There is not only a great potential but also major concerns over privacy, confidentiality, and control of data about individuals once it is shared. Issues, such as user trust, data privacy, transparency over the control of data ownership, and the implications of data analytics for personal privacy with potentially intrusive inferences, are becoming increasingly scrutinized at national and international levels. This can be seen in the recent backlash over the proposed implementation of care.data, which enables individuals' NHS data to be linked, retained, and shared for other uses, such as research and, more controversially, with businesses for commercial exploitation. By way of contrast, through increasing popularity of social media, GPS-enabled mobile apps and tracking/wearable devices, the IT industry and MedTech giants are pursuing new projects without clear public and policy discussion about ownership and responsibility for user-generated data. In the absence of transparent regulation, this paper addresses the opportunities of Big Data in healthcare together with issues of responsibility and accountability. It also aims to pave the way for public policy to support a balanced agenda that safeguards personal information while enabling the use of data to improve public health
    • …
    corecore