151 research outputs found

    Stem diameter and rotational stability in revision total hip arthroplasty: a biomechanical analysis

    Get PDF
    BACKGROUND: Proximal femoral bone loss during revision hip arthroplasty often requires bypassing the deficient metaphyseal bone to obtain distal fixation. The purpose of this study was to determine the effect of stem diameter and length of diaphyseal contact in achieving rotational stability in revision total hip arthroplasty. METHODS: Twenty-four cadaveric femoral specimens were implanted with a fully porous-coated stem. Two different diameters were tested and the stems were implanted at multiple contact lengths without proximal bone support. Each specimen underwent torsional testing to failure and rotational micromotion was measured at the implant-bone interface. RESULTS: The larger stem diameter demonstrated a greater torsional stability for a given length of cortical contact (p ≤ 0.05). Decreasing length of diaphyseal contact length was associated with less torsional stability. Torsional resistance was inconsistent at 2 cm of depth. CONCLUSION: Larger stem diameters frequently used in revisions may be associated with less diaphyseal contact length to achieve equivalent rotational stability compared to smaller diameter stems. Furthermore, a minimum of 3 cm or 4 cm of diaphyseal contact with a porous-coated stem should be achieved in proximal femoral bone deficiency and will likely be dependent on the stem diameter utilized at the time of surgery

    Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery.</p> <p>The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68) of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years) postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years) and the average weight 102.3 kg (75 to 130 kg). The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%.</p> <p>Methods</p> <p>A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material.</p> <p>Results</p> <p>Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck connection. A continuous abrasion and repassivation process with a subsequent cold welding at the titanium alloy modular interface. Surface layers of 10 - 30 μm titanium oxide were observed. Surface cracks caused by fretting or fretting corrosion finally lead to fatigue fracture of the titanium alloy modular neck adapters. Neck adapters made of cobalt chrome alloy show significantly reduced micromotions especially in case of contaminated cone connection. With a cobalt-chromium neck the micromotions can be reduced by a factor of 3 compared to the titanium neck. The incidence of fretting corrosion was also substantially lower with the cobalt-chromium neck configuration.</p> <p>Conclusions</p> <p>Failure of modular titanium alloy neck adapters can be initiated by surface micromotions due to surface contamination or highly loaded implant components. In the present study, the patients at risk were men with an average weight over 100 kg. Modular cobalt chrome neck adapters provide higher safety compared to titanium alloy material.</p

    Optimization of wear loss in silicon nitride (Si3N4)–hexagonal boron nitride (hBN) composite using DoE–Taguchi method

    Get PDF
    Introduction The contacting surfaces subjected to progressive loss of material known as ‘wear,’ which is unavoidable between contacting surfaces. Similar kind of phenomenon observed in the human body in various joints where sliding/rolling contact takes place in contacting parts, leading to loss of material. This is a serious issue related to replaced joint or artificial joint. Case description Out of the various material combinations proposed for artificial joint or joint replacement Si3N4 against Al2O3 is one of in ceramic on ceramic category. Minimizing the wear loss of Si3N4 is a prime requirement to avoid aseptic loosening of artificial joint and extending life of joint. Discussion and evaluation In this paper, an attempt has been made to investigate the wear loss behavior of Si3N4–hBN composite and evaluate the effect of hBN addition in Si3N4 to minimize the wear loss. DoE–Taguchi technique is used to plan and analyze experiments. Conclusion Analysis of experimental results proposes 15 N load and 8 % of hBN addition in Si3N4 is optimum to minimize wear loss against alumina

    Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management

    Get PDF
    Periprosthetic osteolysis is a serious complication of total hip replacement (THR) in the medium to long term. Although often asymptomatic, osteolysis can lead to prosthesis loosening and periprosthetic fracture. These complications cause significant morbidity and require complex revision surgery. Here, we review advances in our understanding of the cell and tissue response to particles produced by wear of the articular and non-articular surfaces of prostheses. We discuss the molecular and cellular regulators of osteoclast formation and bone resorptive activity, a better understanding of which may lead to pharmacological treatments for periprosthetic osteolysis. We describe the development of imaging techniques for the detection and measurement of osteolysis around THR prostheses, which enable improved clinical management of patients, provide a means of evaluating outcomes of non-surgical treatments for periprosthetic osteolysis, and assist in pre-operative planning for revision surgery. Finally, there have been advances in the materials used for bearing surfaces to minimise wear, and we review the literature regarding the performance of these new materials to date.Donald W. Howie, Susan D. Neale, David R. Haynes, Oksana T. Holubowycz, Margaret A. McGee, Lucian B. Solomon, Stuart A. Callary, Gerald J. Atkins, David M. Findla

    Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    Get PDF
    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link
    corecore