61 research outputs found
Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer
This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype
The effects of dissection-room experiences and related coping strategies among Hungarian medical students
Background:
Students get their first experiences of dissecting human cadavers in the practical classes of anatomy
and pathology courses, core components of medical education. These experiences form an important part of the
process of becoming a doctor, but bring with them a special set of problems.
Methods:
Quantitative, national survey (n = 733) among medical students, measured reactions to dissection
experiences and used a new measuring instrument to determine the possible factors of coping.
Results:
Fifty per cent of students stated that the dissection experience
does not affect them
. Negative effects were
significantly more frequently reported by women and students in clinical training (years 3,4,5,6). The predominant
factor in the various coping strategies for dissection practicals is
cognitive coping
(rationalisation, intellectualisation).
Physical
and
emotional
coping strategies followed, with similar mean scores. Marked gender differences also
showed up in the application of coping strategies: there was a clear dominance of emotional-based coping among
women. Among female students, there was a characteristic decrease in the physical repulsion factor in reactions to
dissection in the later stages of study.
Conclusions:
The experience of dissection had an emotional impact on about half of the students. In general,
students considered these experiences to be an important part of becoming a doctor. Our study found that
students chiefly employed cognitive coping strategies to deal with their experiences.
Dissection-room sessions are important for learning emotional as well as technical skills. Successful coping is
achieved not by repressing emotions but by accepting and understanding the negative emotions caused by the
experience and developing effective strategies to deal with them.
Medical training could make better use of the learning potential of these experiences
The influence of crosslinking agents and diamines on the pore size, morphology and biological stability of collagen sponges, and their effect on cell penetration through the sponge matrix
Artificial skin substitutes based on autologous keratinocytes cultured on collagen substrata are being developed for treating patients with severe burns. The properties of the collagen substrate can be manipulated, for example, by crosslinking, to optimize desirable properties such as cell growth and penetration into the substrate, biological stability and mechanical strength. Collagen sponges crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC) and the diamine, diaminohexane, were used to determine the effect of crosslinking on pore size and morphology, on the stability of the crosslinked sponges both in cell culture media and during incubation with collagenase, and on the penetration of keratinocytes and fibroblasts through the sponge matrix. Crosslinking of the sponges reduced the pore size, particularly at the surface, and altered sponge morphology. After crosslinking the collagen fibers were thinner, and appeared lacy and delicate. Crosslinking also influenced sponge stability. In keratinocyte serum-free medium the pore size of plain collagen sponges increased with increasing incubation time, and crosslinking appeared to prevent this, and may have stabilized sponge structure. Incubation in serum-containing Dulbeccorsquos minimum essential medium caused a marked reduction in pore size in both plain collagen and crosslinked collagen sponges. Crosslinking did not appear to influence this cell-free contraction of collagen sponges. Treatment of sponges with EDAC markedly increased the resistance of sponges to collagenase digestion. The penetration of both keratinocytes and fibroblasts was retarded by crosslinking the sponges. Fibroblasts penetrated through the sponges to a greater extent than keratinocytes, and their proliferation rate was faster. The total number of cells populating the crosslinked sponges after 10 days culture was approximately 50% of that on untreated collagen sponges. The mechanism responsible for this effect was different with the two crosslinkers used. Diaminohexane appeared to inhibit cell growth, whereas EDAC may have caused a decrease in cell adhesion to the sponges, without an apparent inhibition of growth rate. In terms of morphology, fibroblasts were elongated to a greater extent on crosslinked sponges, and alligned themselves along the collagen fibers. Keratinocytes grew in colonies on untreated sponges, but on crosslinked sponges they grew in isolation, with minimal cell-cell interactions. It may be necessary to reach a compromise to obtain the best combination of properties for using collagen sponges as substrata for artificial skin substitutes
- …