30 research outputs found
Robust data-driven identification of risk factors and their interactions: A simulation and a study of parental and demographic risk factors for schizophrenia
Objectives Few interactions between risk factors for schizophrenia have been replicated, but fitting all such interactions is difficult due to high-dimensionality. Our aims are to examine significant main and interaction effects for schizophrenia and the performance of our approach using simulated data.Methods We apply the machine learning technique elastic net to a high-dimensional logistic regression model to produce a sparse set of predictors, and then assess the significance of odds ratios (OR) with Bonferroni-corrected p-values and confidence intervals (CI). We introduce a simulation model that resembles a Finnish nested case-control study of schizophrenia which uses national registers to identify cases (n = 1,468) and controls (n = 2,975). The predictors include nine sociodemographic factors and all interactions (31 predictors).Results In the simulation, interactions with OR = 3 and prevalence = 4% were identified with = 80% power. None of the studied interactions were significantly associated with schizophrenia, but main effects of parental psychosis (OR = 5.2, CI 2.9-9.7; p = 35 (1.3, 1.004-1.6; p = .04) were significant.Conclusions We have provided an analytic pipeline for data-driven identification of main and interaction effects in case-control data. We identified highly replicated main effects for schizophrenia, but no interactions
Recognition of Handwriting from Electromyography
Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear
Additive and multiplicative hazards modeling for recurrent event data analysis
<p>Abstract</p> <p>Background</p> <p>Sequentially ordered multivariate failure time or recurrent event duration data are commonly observed in biomedical longitudinal studies. In general, standard hazard regression methods cannot be applied because of correlation between recurrent failure times within a subject and induced dependent censoring. Multiplicative and additive hazards models provide the two principal frameworks for studying the association between risk factors and recurrent event durations for the analysis of multivariate failure time data.</p> <p>Methods</p> <p>Using emergency department visits data, we illustrated and compared the additive and multiplicative hazards models for analysis of recurrent event durations under (i) a varying baseline with a common coefficient effect and (ii) a varying baseline with an order-specific coefficient effect.</p> <p>Results</p> <p>The analysis showed that both additive and multiplicative hazards models, with varying baseline and common coefficient effects, gave similar results with regard to covariates selected to remain in the model of our real dataset. The confidence intervals of the multiplicative hazards model were wider than the additive hazards model for each of the recurrent events. In addition, in both models, the confidence interval gets wider as the revisit order increased because the risk set decreased as the order of visit increased.</p> <p>Conclusions</p> <p>Due to the frequency of multiple failure times or recurrent event duration data in clinical and epidemiologic studies, the multiplicative and additive hazards models are widely applicable and present different information. Hence, it seems desirable to use them, not as alternatives to each other, but together as complementary methods, to provide a more comprehensive understanding of data.</p
Survival Analysis of Patients with Heart Failure: Implications of Time-Varying Regression Effects in Modeling Mortality
Background: Several models have been designed to predict survival of patients with heart failure. These, while available and widely used for both stratifying and deciding upon different treatment options on the individual level, have several limitations. Specifically, some clinical variables that may influence prognosis may have an influence that change over time. Statistical models that include such characteristic may help in evaluating prognosis. The aim of the present study was to analyze and quantify the impact of modeling heart failure survival allowing for covariates with time-varying effects known to be independent predictors of overall mortality in this clinical setting. Methodology: Survival data from an inception cohort of five hundred patients diagnosed with heart failure functional class III and IV between 2002 and 2004 and followed-up to 2006 were analyzed by using the proportional hazards Cox model and variations of the Cox's model and also of the Aalen's additive model. Principal Findings: One-hundred and eighty eight (188) patients died during follow-up. For patients under study, age, serum sodium, hemoglobin, serum creatinine, and left ventricular ejection fraction were significantly associated with mortality. Evidence of time-varying effect was suggested for the last three. Both high hemoglobin and high LV ejection fraction were associated with a reduced risk of dying with a stronger initial effect. High creatinine, associated with an increased risk of dying, also presented an initial stronger effect. The impact of age and sodium were constant over time. Conclusions: The current study points to the importance of evaluating covariates with time-varying effects in heart failure models. The analysis performed suggests that variations of Cox and Aalen models constitute a valuable tool for identifying these variables. The implementation of covariates with time-varying effects into heart failure prognostication models may reduce bias and increase the specificity of such models.CNPq Brazilian Foundation for Scientific and Technological DevelopmentCNPq - Brazilian Foundation for Scientific and Technological Development [150653/2008-5
Statistical inversion of South Atlantic circulation in an abyssal neutral density layer
This paper introduces a Bayesian inversion approach to estimating steady state ocean circulation and tracer fields. It is based on a quasi-horizontal flow model and a PDE solver for the forward problem of computing solutions to the tracer field advection-diffusion equations. A typical feature of existing ocean circulation inverse methods is a preprocessing stage in which the tracer data are interpolated over a regular grid and the interpolation error is ignored in the subsequent inversion. Our approach only uses interpolated data at those grid points that have neighboring hydrographic stations. By exploiting physically-based models in an integrated fashion, the method provides a statistically unified inversion and tracer field reconstruction with minimal data smoothing. Solving the problem consists of finding information about the circulation and tracer fields in the presence of a number of assumptions (prior information); the resulting posterior probability distribution summarizes what we can know about these fields. We develop a Markov chain Monte Carlo simulation procedure to extract information from the (analytically intractable) posterior distribution of all the parameters in the model; uncertainty about the "solution" is represented by variation in the output of the simulation runs. Our approach is aimed at finding the time-averaged quasi-horizontal flow and tracer fields for an abyssal neutral density layer in the South Atlantic