17 research outputs found
TRMM Microwave Imager (TMI) Alignment and Along-Scan Bias Corrections
The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) has been updated to a final version following the decommissioning of the TRMM satellite in April 2015. The updates are based on increased knowledge of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI updates. This paper discusses two aspects of the TMI data product that have been reanalyzed and updated: alignment and along-scan bias corrections. The TMI's pointing accuracy is significantly improved over prior PPS versions, which used at-launch alignment values.A TMI instrument mounting offset is discovered as well as new alignment offsets for the two TMI feedhorns. The original TMI along-scan antenna temperature bias correction is found to be generally accurate over ocean, but a scene temperature-dependent correction is needed to account for edge-of-scan obstruction. These updates are incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI
The NASA CYGNSS SmallSat Constellation
The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellites in low earth orbit at ~525 km altitude and 35 deg inclination. CYGNSS was launched in December 2016 for a planned 2 year mission and 7 of the 8 spacecraft continue to operatue nominally as of May 2023. Each microsatellites carries a bistatic radar receiver to measure reflected GPS signals from the Earth surface. The measurements can be converted to surface wind speed and latent and sensible heat flux over the ocean, and to surface soil moisture and wetland extent over land. Measurements penetrate through all levels of precipitation as well as moderate to heavy vegetation due to the low microwave frequency used by GPS. The number of satellites in the constellation results in sub-daily refresh rates which supports imaging of short time scale weather events such as hurricane rapid intensification, flood inundation dynamics, and sudden soil saturation after major rain events. CYGNSS satellites uses a single string design architecture to reduce the complexity and recurring cost of each unit. Mission redundancy is obtained at the constellation level. Data products are produced by combining measurements from all satellites in such a way that the sampling requirements can be met using only a subset of the satellites. Constellation-level redundancy also permits individual satellites to be switched from their nominal science data taking mode to various engineering test and calibration modes while the overall mission is still able to meet its science requirements
TRMM Microwave Imager (TMI) Updates for Final Data Version Release
The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) will be updated to a final version within the next year. These updates are based on increased knowledge in recent years of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI version updates. This paper discusses four aspects of the TMI data product that will be improved: spacecraft attitude, calibration and quality control, along-scan bias corrections, and sensor pointing accuracy. These updates will be incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI
SATELLITE ATTITUDE ANALYSIS USING THE VICARIOUS COLD CALIBRATION METHOD FOR MICROWAVE RADIOMETERS
ABSTRACT A method for estimating the pitch and roll errors of a satellite with an onboard conical scanning microwave radiometer is described. The method makes use of the vicarious cold calibration algorithm which derives a stable cold brightness temperature (TB) over ocean. This cold TB is sensitive to the Earth Incidence Angle (EIA) of the radiometer. Given no pitch or roll errors, the EIA can be modeled as a function of the Earth radius and altitude of the satellite. Deviation from this EIA can then be used to estimate the pitch and roll errors. The pitch/roll algorithm is applied to the current spaceborne microwave radiometer WindSat to show its performance, and the results are compared to the derived pitch and roll of WindSat that are found using a different attitude analysis method
Vicarious Calibration of Global Precipitation Measurement Microwave Radiometers
The vicarious cold calibration method of Ruf has been used to assess the calibration of the TMI, WindSat, SSM/I F13 and SSM/I F14 microwave radiometers using data from the GPM Inter-Calibration Working Group. Significant scan position dependent biases are seen for TMI (as large as 1 K) and for WindSat (as large as 5 K) – scan position dependent biases in SSM/I data were removed prior to processing. These biases are thought to be due to obstructions in the edge of scan field of view from the given instrument and its spacecraft. WindSat vertically polarized data also show a linear decrease in vicarious cold calibration brightness temperatures with scan position. SSM/I F13 and F14 vicarious cold brightness temperatures differ by an amount consistent with a ~.2 ° offset in their relative Earth incidence angles
Thin Fisher Zeroes
Biskup et al. [Phys. Rev. Lett. 84 (2000) 4794] have recently suggested that
the loci of partition function zeroes can profitably be regarded as phase
boundaries in the complex temperature or field planes.
We obtain the Fisher zeroes for Ising and Potts models on non-planar
(``thin'') regular random graphs using this approach, and note that the locus
of Fisher zeroes on a Bethe lattice is identical to the corresponding random
graph. Since the number of states appears as a parameter in the Potts solution
the limiting locus of chromatic zeroes is also accessible.Comment: 10 pages, 4 figure
Interferometric Synthetic Aperture Microwave Radiometers : an Overview
This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session
Fundamental Climate Data Records of Microwave Brightness Temperatures
An intercalibrated Fundamental Climate Data Record (FCDR) of brightness temperatures (Tb) has been developed using data from a total of 14 research and operational conical-scanning microwave imagers. This dataset provides a consistent 30+ year data record of global observations that is well suited for retrieving estimates of precipitation, total precipitable water, cloud liquid water, ocean surface wind speed, sea ice extent and concentration, snow cover, soil moisture, and land surface emissivity. An initial FCDR was developed for a series of ten Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments on board the Defense Meteorological Satellite Program spacecraft. An updated version of this dataset, including additional NASA and Japanese sensors, has been developed as part of the Global Precipitation Measurement (GPM) mission. The FCDR development efforts involved quality control of the original data, geolocation corrections, calibration corrections to account for cross-track and time-dependent calibration errors, and intercalibration to ensure consistency with the calibration reference. Both the initial SSMI(S) and subsequent GPM Level 1C FCDR datasets are documented, updated in near real-time, and publicly distributed
A Consensus Calibration Based On Tmi And Windsat
The Global Precipitation Measurement (GPM) mission requires a high degree of consistency among the microwave radiometers in the constellation which, in turn, demands a standard against which all the sensors can be compared. Ultimately this standard will be the GPM Microwave Imager, but for the present the TRMM Microwave Imager (TMI) fills this need. Since its calibration leaves much to be desired, a refinement using Windsat has been developed. This article defines the Consensus Calibration 1.1 which is applied to the TMI. In turn the TMI serves as a transfer standard to other satellite radiometers. © 2011 IEEE