10,241 research outputs found

    Process for the leaching of AP from propellant

    Get PDF
    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension

    Greenbug: a hybrid web-inspector, debugger and design editor for greenstone

    Get PDF
    In this paper we present Greenbug: a hybrid web inspector, debugger and design editor developed for use with the open source digital library software Greenstone 3. Inspired by the web development tool Firebug, Greenbug is more tightly coupled with the underlying (digital library) server than that provided by Firebug; for example, Greenbug has a fine-grained knowledge of the connection between the underlying file system and the rendered web content, and also provides the ability to commit any changes made through the web interface back to the underlying file system. Moreover, because web page production in Greenstone 3 is the result of an XSLT processing pipeline, the necessarily well-formed hierarchical XML content can be manipulated into a graphical representation, which can then be manipulated directly through a visual interface supplied by Greenbug. We showcase the interface in use, provide a brief overview of implementation details, and conclude with a discussion on how the approach can be adapted to other XSLT transformation-based content management systems, such as DSpace

    The effect of oxygen starvation on ignition phenomena in a reactive solid containing a hot-spot

    No full text
    In this paper, we explore the effect of oxygen supply on the conditions necessary to sustain a self-propagating front from a spherical source of heat embedded in a much larger volume of solid. The ignition characteristics for a spherical hot-spot are investigated, where the reaction is limited by oxygen, that is, reactant + oxygen ? product. It is found that over a wide range of realistic oxygen supply levels, constant heating of the solid by the hot-spot results in a self-propagating combustion front above a certain critical hot-spot power; this is clearly an important issue for industries in which hazard prevention is important. The ignition event leading to the formation of this combustion wave involves an extremely sensitive balance between the heat generated by the chemical reaction and the depletion of the reactant. As a result, for small hot-spot radii and infinite oxygen supply, not only is there a critical power above which a self-sustained combustion front is initiated there also exists a power beyond which no front is formed, before a second higher critical power is found. The plot of critical power against hot-spot radius thus takes on a Z-shape appearance. The corresponding shape for the oxygen-limited reaction is qualitatively the same when the ratio of solid thermal diffusion to oxygen mass diffusion (N) is small and we establish critical conditions for the initiation of a self-sustained combustion front in that case. As N gets larger, while still below unity, we show that the Z-shape flattens out. At still larger values of N, the supercritical behaviour becomes increasingly difficult to define and is supplanted by burning that depends more uniformly on power. In other words, the transition from slow burning to complete combustion seen at small values of N for some critical power disappears. Even higher values of N lead to less solid burning at fixed values of power

    The degradation of alzak by short wavelength ultraviolet radiation

    Get PDF
    The changes in reflectance of thermal aluminum coating samples exposed to different irradiating utraviolet wavelengths are discussed. It is shown that the coating is damaged faster and further by 180 to 210 in radiation than by Lyman alpha radiation. On an equivalent incident energy basis, Lyman alpha does less damage than 180 to 210 nm radiation. Above 300 nm no degradation is observed for long exposures and below 300 nm increasing degradation with decreasing wavelength is found. It is concluded that Lyman alpha radiation need not be included in laboratory testing of this thermal coating for spacecraft structures

    Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    Get PDF
    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10310^3 in luminosity (LIRLBAT1.25L_{IR} \approx L_{BAT}^{1.25})and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.Comment: accepted to ApJ

    Solid rocket propellant waste disposal/ingredient recovery study

    Get PDF
    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful

    Solar activity during Skylab: Its distribution and relation to coronal holes

    Get PDF
    Solar active regions observed during the period of Skylab observations (May 1973-February 1974) were examined for properties that varied systematically with location on the sun, particularly with respect to the location of coronal holes. Approximately 90 percent of the optical and X-ray flare activity occurred in one solar hemisphere (136-315 heliographic degrees longitude). Active regions within 20 heliographic degrees of coronal holes were below average in lifetimes, flare production, and magnetic complexity. Histograms of solar flares as a function of solar longitude were aligned with H alpha synoptic charts on which active region serial numbers and coronal hole boundaries were added

    The Impact of New EUV Diagnostics on CME-Related Kinematics

    Get PDF
    We present the application of novel diagnostics to the spectroscopic observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently developed line profile asymmetry analysis to the spectroscopic observation of NOAA AR 10930 on 14-15 December 2006 to three raster observations before and during the eruption of a 1000km/s CME. We see the impact that the observer's line-of-sight and magnetic field geometry have on the diagnostics used. Further, and more importantly, we identify the on-disk signature of a high-speed outflow behind the CME in the dimming region arising as a result of the eruption. Supported by recent coronal observations of the STEREO spacecraft, we speculate about the momentum flux resulting from this outflow as a secondary momentum source to the CME. The results presented highlight the importance of spectroscopic measurements in relation to CME kinematics, and the need for full-disk synoptic spectroscopic observations of the coronal and chromospheric plasmas to capture the signature of such explosive energy release as a way of providing better constraints of CME propagation times to L1, or any other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures. Movies supporting the figures can be found in http://download.hao.ucar.edu/pub/mscott/papers/Weathe
    corecore