6,961 research outputs found

    Optimal redesign study of the harm wing

    Get PDF
    The purpose of this project was to investigate the use of optimization techniques to improve the flutter margins of the HARM AGM-88A wing. The missile has four cruciform wings, located near mid-fuselage, that are actuated in pairs symmetrically and antisymmetrically to provide pitch, yaw, and roll control. The wings have a solid stainless steel forward section and a stainless steel crushed-honeycomb aft section. The wing restraint stiffness is dependent upon wing pitch amplitude and varies from a low value near neutral pitch attitude to a much higher value at off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the control system. The most critical condition for flutter is the low-stiffness condition in which the wings are moved symmetrically. Although a tendency toward limit-cycle flutter is controlled in the current design by controller logic, wing redesign to improve this situation is attractive because it can be accomplished as a retrofit. In view of the exploratory nature of the study, it was decided to apply the optimization to a wing-only model, validated by comparison with results obtained by Texas Instruments (TI). Any wing designs that looked promising were to be evaluated at TI with more complicated models, including body modes. The optimization work was performed by McIntosh Structural Dynamics, Inc. (MSD) under a contract from TI

    Static aeroelastic analysis and tailoring of missile control fins

    Get PDF
    A concept for enhancing the design of control fins for supersonic tactical missiles is described. The concept makes use of aeroelastic tailoring to create fin designs (for given planforms) that limit the variations in hinge moments that can occur during maneuvers involving high load factors and high angles of attack. It combines supersonic nonlinear aerodynamic load calculations with finite-element structural modeling, static and dynamic structural analysis, and optimization. The problem definition is illustrated. The fin is at least partly made up of a composite material. The layup is fixed, and the orientations of the material principal axes are allowed to vary; these are the design variables. The objective is the magnitude of the difference between the chordwise location of the center of pressure and its desired location, calculated for a given flight condition. Three types of constraints can be imposed: upper bounds on static displacements for a given set of load conditions, lower bounds on specified natural frequencies, and upper bounds on the critical flutter damping parameter at a given set of flight speeds and altitudes. The idea is to seek designs that reduce variations in hinge moments that would otherwise occur. The block diagram describes the operation of the computer program that accomplishes these tasks. There is an option for a single analysis in addition to the optimization

    Magnetic suspension and balance system advanced study

    Get PDF
    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design

    Magnetic suspension and balance system advanced study, 1989 design

    Get PDF
    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved

    Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs

    Get PDF
    A compact, narrow-linewidth, tunable source of THz radiation has been developed for spectroscopy and other high-resolution applications. Distributed-Bragg-reflector (DBR) diode lasers at 850 nm are used to pump a low-temperature-grown GaAs photomixer. Resonant optical feedback is employed to stabilize the center frequencies and narrow the linewidths of the DBR lasers. The heterodyne linewidth full-width at half-maximum of two optically locked DBR lasers is 50 kHz on the 20 ms time scale and 2 MHz over 10 s; free-running DBR lasers have linewidths of 40 and 90 MHz on such time scales. This instrument has been used to obtain rotational spectra of acetonitrile (CH3CN) at 313 GHz. Detection limits of 1 × 10^–4 Hz^1/2 (noise/total power) have been achieved, with the noise floor dominated by the detector's noise equivalent power

    Other Challenges in the Development of the Orbiter Environmental Control Hardware

    Get PDF
    Development of the Space Shuttle orbiter environmental control and life support system (ECLSS) included the identification and resolution of several interesting problems in several systems. Some of these problems occurred late in the program, including the flight phase. Problems and solutions related to the ammonia boiler system (ABS), smoke detector, water/hydrogen separator, and waste collector system (WCS) are addressed

    Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by α6α4* Nicotinic Acetylcholine Receptors

    Get PDF
    Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express α6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive α6^(L9’S*) receptors. α6^(L9’S) mice are hyperactive, travel greater distance, exhibit increased ambulatory behaviors such as walking, turning, and rearing, and show decreased pausing, hanging, drinking, and grooming. These effects were mediated by α6 α4* pentamers, as α6^(L9’S) mice lacking α4 subunits displayed essentially normal behavior. In α6^(L9’S) mice, receptor numbers are normal, but loss of α4 subunits leads to fewer and less sensitive α6* receptors. Gain-of-function nicotine-stimulated DA release from striatal synaptosomes requires α4 subunits, implicating α6α4β2* nAChRs in α6^(L9’S) mouse behaviors. In brain slices, we applied electrochemical measurements to study control of DA release by α6^(L9’S) nAChRs. Burst stimulation of DA fibers elicited increased DA release relative to single action potentials selectively in α6^(L9’S), but not WT or α4KO/ α6^(L9’S), mice. Thus, increased nAChR activity, like decreased activity, leads to enhanced extracellular DA release during phasic firing. Bursts may directly enhance DA release from α6^(L9’S) presynaptic terminals, as there was no difference in striatal DA receptor numbers or DA transporter levels or function in vitro. These results implicate α6α4β2* nAChRs in cholinergic control of DA transmission, and strongly suggest that these receptors are candidate drug targets for disorders involving the DA system

    Validation of a commercially available indirect assay for SARS-CoV-2 neutralising antibodies using a pseudotyped virus assay.

    Get PDF
    Objectives To assess whether a commercially available CE-IVD, ELISA-based surrogate neutralisation assay (cPass, Genscript) provides a genuine measure of SARS-CoV-2 neutralisation by human sera, and further to establish whether measuring responses against the RBD of S was a diagnostically useful proxy for responses against the whole S protein. Methods Serum samples from 30 patients were assayed for anti-NP responses, for ‘neutralisation’ by the surrogate neutralisation assay and for neutralisation by SARS-CoV-2 S pseudotyped virus assays utilising two target cell lines. Correlation between assays was measured using linear regression. Results The responses observed within the surrogate neutralisation assay demonstrated an extremely strong, highly significant positive correlation with those observed in both pseudotyped virus assays. Conclusions The tested ELISA-based surrogate assay provides an immunologically useful measure of functional immune responses in a much quicker and highly automatable fashion. It also reinforces that detection of anti-RBD neutralising antibodies alone is a powerful measure of the capacity to neutralise viral infection
    • …
    corecore