762 research outputs found

    Thapsigargin and Dimethyl Sulfoxide Activate Medium P i ↔ HOH Oxygen Exchange Catalyzed by Sarcoplasmic Reticulum Ca 2+ -ATPase

    Get PDF
    Thapsigargin is a potent inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase. It binds the Ca(2+)-free E2 conformation in the picomolar range, supposedly resulting in a largely catalytically inactive species. We now find that thapsigargin has little effect on medium P(i) HOH oxygen exchange and that this activity is greatly stimulated (up to 30-fold) in the presence of 30% (v/v) Me(2)SO. Assuming a simple two-step mechanism, we have evaluated the effect of thapsigargin and Me(2)SO on the four rate constants governing the reaction of P(i) with Ca(2+)-ATPase. The principal effect of thapsigargin alone is to stimulate EP hydrolysis (k(-2)), whereas that of Me(2)SO is to greatly retard P(i) dissociation (k(-1)), accounting for its well known effect on increasing the apparent affinity for P(i). These effects persist when the agents are used in combination and substantially account for the activated oxygen exchange (v(exchange) = k(-2)[EP]). Kinetic simulations show that the overall rate constant for the formation of EP is very fast (approximately 300 s(-1)) when the exchange is maximal. Thapsigargin greatly stabilizes Ca(2+)-ATPase against denaturation in detergent in the absence of Ca(2+), as revealed by glutaraldehyde cross-linking, suggesting that the membrane helices lock together. It seems that the reactions at the phosphorylation site, associated with the activated exchange reaction, are occurring without much movement of the transport site helices, and we suggest that they may be associated solely with an occluded H+ state

    A Remarkably Stable Phosphorylated Form of Ca 2+ -ATPase Prepared from Ca 2+ -loaded and Fluorescein Isothiocyanate-labeled Sarcoplasmic Reticulum Vesicles

    Get PDF
    After the nucleotide binding domain in sarcoplasmic reticulum Ca2+-ATPase has been derivatized with fluorescein isothiocyanate at Lys-515, ATPase phosphorylation in the presence of a calcium gradient, with Ca2+ on the lumenal side but without Ca2+ on the cytosolic side, results in the formation of a species that exhibits exceptionally low probe fluorescence (Pick, U. (1981) FEBS Lett. 123, 131-136). We show here that, as long as the free calcium concentration on the cytosolic side is kept in the nanomolar range, this low fluorescence species is remarkably stable, even when the calcium gradient is subsequently dissipated by ionophore. This species is a Ca2+-free phosphorylated species. The kinetics of Ca2+ binding to it indicates that its transport sites are exposed to the cytosolic side of the membrane and retain a high affinity for Ca2+. Thus, in the ATPase catalytic cycle, an intrinsically transient phosphorylated species with transport sites occupied but not yet occluded must also have been stabilized by fluorescein isothiocyanate (FITC), possibly mimicking ADP. The low fluorescence mainly results from a change in FITC absorption. The Ca2+-free low fluorescence FITC-ATPase species remains stable after addition of thapsigargin in the absence or presence of decavanadate, or after solubilization with dodecylmaltoside. The remarkable stability of this phosphoenzyme species and the changes in FITC spectroscopic properties are discussed in terms of a putative FITC-mediated link between the nucleotide binding domain and the phosphorylation domain in Ca2+-ATPase, and the possible formation of a transition state-like conformation with a compact cytosolic head. These findings might open a path toward structural characterization of a stable phosphorylated form of Ca2+-ATPase for the first time, and thus to further insights into the pump's mechanism

    Importance of Conserved N-domain Residues Thr 441 , Glu 442 , Lys 515 , Arg 560 , and Leu 562 of Sarcoplasmic Reticulum Ca 2+ -ATPase for MgATP Binding and Subsequent Catalytic Steps: PLASTICITY OF THE NUCLEOTIDE-BINDING SITE

    Get PDF
    Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein

    Bending forces plastically deform growing bacterial cell walls

    Full text link
    Cell walls define a cell shape in bacteria. They are rigid to resist large internal pressures, but remarkably plastic to adapt to a wide range of external forces and geometric constraints. Currently, it is unknown how bacteria maintain their shape. In this work, we develop experimental and theoretical approaches and show that mechanical stresses regulate bacterial cell-wall growth. By applying a precisely controllable hydrodynamic force to growing rod-shaped Escherichia coli and Bacillus subtilis cells, we demonstrate that the cells can exhibit two fundamentally different modes of deformation. The cells behave like elastic rods when subjected to transient forces, but deform plastically when significant cell wall synthesis occurs while the force is applied. The deformed cells always recover their shape. The experimental results are in quantitative agreement with the predictions of the theory of dislocation-mediated growth. In particular, we find that a single dimensionless parameter, which depends on a combination of independently measured physical properties of the cell, can describe the cell's responses under various experimental conditions. These findings provide insight into how living cells robustly maintain their shape under varying physical environments

    Single-stranded nucleic acid elasticity arises from internal electrostatic tension

    Get PDF
    Charged, flexible polymers, such as single-stranded nucleic acids (ssNAs), are ubiquitous in biology and technology. Quantitative description of their solution conformation has remained elusive due to the competing effects of polymer configurational freedom and salt-screened electrostatic repulsion between monomers. We investigate this by measuring the elastic response of single ssNA molecules over a range of salt concentrations. The data are well described by a model, inspired by a mean-field approach, in which intrapolymer electrostatic repulsion creates a salt-dependent internal tension whose interplay with the external force determines the elasticity. The internal tension can be related to the polymer’s charge spacing; thus, our results show how mesoscopic polymer conformation emerges from microscopic structure

    ATPase and Multidrug Transport Activities of the Overexpressed Yeast ABC Protein Yor1p

    Get PDF
    The Saccharomyces cerevisiae genome encodes 15 full-size ATP binding cassette transporters (ABC), of which PDR5, SNQ2, and YOR1 are known to be regulated by the transcription factors Pdr1p and Pdr3p (pleiotropic drug resistance). We have identified two new ABC transporter-encoding genes, PDR10 and PDR15, which were up-regulated by the PDR1-3 mutation. These genes, as well as four other ABC transporter-encoding genes, were deleted in order to study the properties of Yor1p. The PDR1-3 gain-of-function mutant was then used to overproduce Yor1p up to 10% of the total plasma membrane proteins. Overexpressed Yor1p was photolabeled by [gamma-32P]2', 3'-O-(2,4,6-trinitrophenyl)-8-azido-ATP (K0.5 = 45 microM) and inhibited by ATP (KD = 0.3 mM) in plasma membranes. Solubilization and partial purification on sucrose gradient allowed to detect significant Yor1p ATP hydrolysis activity (approximately 100 nmol of Pi.min-1.mg-1). This activity was phospholipid-dependent and sensitive to low concentrations of vanadate (I50 = 0.3 microM) and oligomycin (I50 = 8.5 microg/ml). In vivo, we observed a correlation between the amount of Yor1p in the plasma membrane and the level of resistance to oligomycin. We also demonstrated that Yor1p drives an energy-dependent, proton uncoupler-insensitive, cellular extrusion of rhodamine B. Furthermore, cells lacking both Yor1p and Pdr5p (but not Snq2p) showed increased accumulation of the fluorescent derivative of 1-myristoyl-2-[6-(NBD)aminocaproyl]phosphatidylethanolamine. Despite their different topologies, both Yor1p and Pdr5p mediated the ATP-dependent translocation of similar drugs and phospholipids across the yeast cell membrane. Both ABC transporters exhibit ATP hydrolysis in vitro, but Pdr5p ATPase activity is about 15 times higher than that of Yor1p, which may indicate mechanistic or regulatory differences between the two enzymes

    Software support for environmental evidence synthesis

    Get PDF
    Ecological research is central to efforts to ensure the provision of critical societal needs such as clean water, carbon abatement, and to avert the loss of biodiversity. The amount of research published on these subjects has increased enormously in recent ears, yet this research is not always used to improve environmental management or policy4. This ‘research-implementation gap’ is sustained by many factors including low access to scientific research outside of academia, a lack of flexible decision-making structures to incorporate new information, and mismatches between management and scientific priorities. A key step towards bridging the research-implementation gap, however, is to gather insights from the entire body of available evidence to ensure that scientific advice is as consistent and accurate as possible. This requires evidence synthesis; work by individuals or teams that take scientific outputs (articles and reports) and use them to understand the effectiveness of an intervention in a range of contexts. Consequently, applied synthesis has become indispensable to the application of scientific information to socio-ecological problems
    • …
    corecore