863 research outputs found

    Introduction to Modified Gravity and Gravitational Alternative for Dark Energy

    Full text link
    We review various modified gravities considered as gravitational alternative for dark energy. Specifically, we consider the versions of f(R)f(R), f(G)f(G) or f(R,G)f(R,G) gravity, model with non-linear gravitational coupling or string-inspired model with Gauss-Bonnet-dilaton coupling in the late universe where they lead to cosmic speed-up. It is shown that some of such theories may pass the Solar System tests. On the same time, it is demonstrated that they have quite rich cosmological structure: they may naturally describe the effective (cosmological constant, quintessence or phantom) late-time era with a possible transition from decceleration to acceleration thanks to gravitational terms which increase with scalar curvature decrease. The possibility to explain the coincidence problem as the manifestation of the universe expansion in such models is mentioned. The late (phantom or quintessence) universe filled with dark fluid with inhomogeneous equation of state (where inhomogeneous terms are originated from the modified gravity) is also described.Comment: LaTeX file, 21 pages, references are added, lectures for 42 Karpacz Winter School on Theor Physic

    Localized Nasopharyngeal Amyloidosis

    Get PDF
    A mass in the nasopharynx often implies a malignancy in adults, particularly in the endemic areas of Epstein-Barr virus-associated undifferentiated carcinoma. We report an 86-year-old male patient who presented to our rhinologic outpatient department with postnasal drip for several years, with no other associated nasal symptoms. Physical examination with nasal endoscopy found a prominent bulge in the nasopharynx. Pathological examination of the biopsied specimens identified features consistent with amyloidosis. Magnetic resonance imaging demonstrated an enhanced soft-tissue mass localized to the nasopharyngeal region. We excluded the possibility of a partial representation of a potential systemic amyloidosis. Regular follow-up including nasal endoscopy was undertaken. Over 3 years of observation, the disease process remained silent. Here, the clinical presentation, diagnosis and treatment options of this rare entity are discussed

    Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Get PDF
    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency

    Effective growth of matter density fluctuations in the running LCDM and LXCDM models

    Full text link
    We investigate the matter density fluctuations \delta\rho/\rho for two dark energy (DE) models in the literature in which the cosmological term \Lambda is a running parameter. In the first model, the running LCDM model, matter and DE exchange energy, whereas in the second model, the LXCDM model, the total DE and matter components are conserved separately. The LXCDM model was proposed as an interesting solution to the cosmic coincidence problem. It includes an extra dynamical component, the "cosmon" X, which interacts with the running \Lambda, but not with matter. In our analysis we make use of the current value of the linear bias parameter, b^2(0)= P_{GG}/P_{MM}, where P_{MM} ~ (\delta\rho/\rho)^2 is the present matter power spectrum and P_{GG} is the galaxy fluctuation power spectrum. The former can be computed within a given model, and the latter is found from the observed LSS data (at small z) obtained by the 2dF galaxy redshift survey. It is found that b^2(0)=1 within a 10% accuracy for the standard LCDM model. Adopting this limit for any DE model and using a method based on the effective equation of state for the DE, we can set a limit on the growth of matter density perturbations for the running LCDM model, the solution of which is known. This provides a good test of the procedure, which we then apply to the LXCDM model in order to determine the physical region of parameter space, compatible with the LSS data. In this region, the LXCDM model is consistent with known observations and provides at the same time a viable solution to the cosmic coincidence problem.Comment: LaTeX, 38 pages, 8 figures. Version accepted in JCA

    Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: integrated pooled clinical trial and post-marketing surveillance data.

    Get PDF
    BACKGROUND: Secukinumab, a fully human immunoglobulin G1-kappa monoclonal antibody that directly inhibits interleukin (IL)-17A, has been shown to have robust efficacy in the treatment of moderate-to-severe psoriasis (PsO), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) demonstrating a rapid onset of action and sustained long-term clinical responses with a consistently favorable safety profile in multiple Phase 2 and 3 trials. Here, we report longer-term pooled safety and tolerability data for secukinumab across three indications (up to 5 years of treatment in PsO and PsA; up to 4 years in AS). METHODS: The integrated clinical trial safety dataset included data pooled from 21 randomized controlled clinical trials of secukinumab 300 or 150 or 75 mg in PsO (14 Phase 3 trials and 1 Phase 4 trial), PsA (3 Phase 3 trials), and AS (3 Phase 3 trials), along with post-marketing safety surveillance data with a cut-off date of June 25, 2017. Adverse events (AEs) were reported as exposure-adjusted incident rates (EAIRs) per 100 patient-years. Analyses included all patients who received ≥ 1 dose of secukinumab. RESULTS: A total of 5181, 1380, and 794 patients from PsO, PsA, and AS clinical trials representing secukinumab exposures of 10,416.9, 3866.9, and 1943.1 patient-years, respectively, and post-marketing data from patients with a cumulative exposure to secukinumab of ~ 96,054 patient-years were included in the analysis. The most frequent AE was upper respiratory tract infection. EAIRs across PsO, PsA, and AS indications were generally low for serious infections (1.4, 1.9, and 1.2, respectively), Candida infections (2.2, 1.5, and 0.7, respectively), inflammatory bowel disease (0.01, 0.05, and 0.1, respectively), and major adverse cardiac events (0.3, 0.4, and 0.6, respectively). No cases of tuberculosis reactivation were reported. The incidence of treatment-emergent anti-drug antibodies was low with secukinumab across all studies, with no discernible loss of efficacy, unexpected alterations in pharmacokinetics, or association with immunogenicity-related AEs. CONCLUSIONS: Secukinumab demonstrated a favorable safety profile over long-term treatment in patients with PsO, PsA, and AS. This comprehensive assessment demonstrated that the safety profile of secukinumab was consistent with previous reports in patients with PsO, PsA, and AS, supporting its long-term use in these chronic conditions

    Quasinormal modes of a black hole surrounded by quintessence

    Full text link
    Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massless scalar field perturbation around the black hole which is surrounded by the static and spherically symmetric quintessence. Our result shows that due to the presence of quintessence, the scalar field damps more rapidly. Moreover, we also note that the quintessential state parameter ϵ\epsilon (the ratio of pressure pqp_q to the energy density ρq\rho_q) play an important role for the quasinormal frequencies. As the state parameter ϵ\epsilon increases the real part increases and the absolute value of the imaginary part decreases. This means that the scalar field decays more slowly in the larger ϵ\epsilon quintessence case.Comment: 7 pages, 3 figure

    Modified gravity and its reconstruction from the universe expansion history

    Get PDF
    We develop the reconstruction program for the number of modified gravities: scalar-tensor theory, f(R)f(R), F(G)F(G) and string-inspired, scalar-Gauss-Bonnet gravity. The known (classical) universe expansion history is used for the explicit and successful reconstruction of some versions (of special form or with specific potentials) from all above modified gravities. It is demonstrated that cosmological sequence of matter dominance, decceleration-acceleration transition and acceleration era may always emerge as cosmological solutions of such theory. Moreover, the late-time dark energy FRW universe may have the approximate or exact Λ\LambdaCDM form consistent with three years WMAP data. The principal possibility to extend this reconstruction scheme to include the radiation dominated era and inflation is briefly mentioned. Finally, it is indicated how even modified gravity which does not describe the matter-dominated epoch may have such a solution before acceleration era at the price of the introduction of compensating dark energy.Comment: LaTeX file, 24 pages, no figure, prepared for the proceedings of ERE 2006, minor correction

    Orbital dynamics of "smart dust" devices with solar radiation pressure and drag

    Get PDF
    This paper investigates how perturbations due to asymmetric solar radiation pressure, in the presence of Earth shadow, and atmospheric drag can be balanced to obtain long-lived Earth centred orbits for swarms of micro-scale 'smart dust' devices, without the use of active control. The secular variation of Keplerian elements is expressed analytically through an averaging technique. Families of solutions are then identified where Sun-synchronous apse-line precession is achieved passively to maintain asymmetric solar radiation pressure. The long-term orbit evolution is characterized by librational motion, progressively decaying due to the non-conservative effect of atmospheric drag. Long-lived orbits can then be designed through the interaction of energy gain from asymmetric solar radiation pressure and energy dissipation due to drag. In this way, the usual short drag lifetime of such high area-to-mass spacecraft can be greatly extended (and indeed selected). In addition, the effect of atmospheric drag can be exploited to ensure the rapid end-of-life decay of such devices, thus preventing long-lived orbit debris
    corecore