42 research outputs found

    A rare mutation in SMAD9 associated with high bone mass identifies the SMAD-dependent BMP signalling pathway as a potential anabolic target for osteoporosis

    Get PDF
    Novel anabolic drug targets are needed to treat osteoporosis. Having established a large national cohort with unexplained high bone mass (HBM), we aimed to identify a novel monogenic cause of HBM and provide insight into a regulatory pathway potentially amenable to therapeutic intervention. We investigated a pedigree with unexplained HBM in whom previous sequencing had excluded known causes of monogenic HBM. Whole exome sequencing identified a rare (minor allele frequency 0.0023), highly evolutionarily conserved missense mutation in SMAD9 (c.65T>C, p.Leu22Pro) segregating with HBM in this autosomal dominant family. The same mutation was identified in another two unrelated individuals both with HBM. In silico protein modeling predicts the mutation severely disrupts the MH1 DNA-binding domain of SMAD9. Affected individuals have bone mineral density (BMD) Z-scores +3 to +5, mandible enlargement, a broad frame, torus palatinus/mandibularis, pes planus, increased shoe size, and a tendency to sink when swimming. Peripheral quantitative computed tomography (pQCT) measurement demonstrates increased trabecular volumetric BMD and increased cortical thickness conferring greater predicted bone strength; bone turnover markers are low/normal. Notably, fractures and nerve compression are not found. Both genome-wide and gene-based association testing involving estimated BMD measured at the heel in 362,924 white British subjects from the UK Biobank Study showed strong associations with SMAD9 (P-GWAS = 6 x 10(-16); P-GENE = 8 x 10(-17)). Furthermore, we found Smad9 to be highly expressed in both murine cortical bone-derived osteocytes and skeletal elements of zebrafish larvae. Our findings support SMAD9 as a novel HBM gene and a potential novel osteoanabolic target for osteoporosis therapeutics. SMAD9 is thought to inhibit bone morphogenetic protein (BMP)-dependent target gene transcription to reduce osteoblast activity. Thus, we hypothesize SMAD9 c.65T>C is a loss-of-function mutation reducing BMP inhibition. Lowering SMAD9 as a potential novel anabolic mechanism for osteoporosis therapeutics warrants further investigation. (c) 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research

    NAD deficiency, congenital malformations, and niacin supplementation

    Get PDF
    BACKGROUND: Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. METHODS: We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 system. RESULTS: Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. CONCLUSIONS: Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice

    The emerging field of polygenic risk scores and perspective for use in clinical care

    No full text
    Genetic testing is used widely for diagnostic, carrier and predictive testing in monogenic diseases. Until recently, there were no genetic testing options available for multifactorial complex diseases like heart disease, diabetes, and cancer. Genome wide association studies (GWAS) have been invaluable in identifying single nucleotide polymorphisms (SNPs), associated with increased or decreased risk for hundreds of complex disorders. For a given disease, SNPs can be combined to generate a cumulative estimation of risk known as a polygenic risk score (PRS). After years of research, PRSs are increasingly used in clinical settings. In this article we will review the literature on how both genome-wide and restricted PRSs are developed and the relative merit of each. The validation and evaluation of PRSs will also be discussed, including the recognition that PRS validity is intrinsically linked to the methodological and analytical approach of the foundation GWAS together with the ethnic characteristics of that cohort. Specifically, population differences may affect imputation accuracy, risk magnitude and direction. Even as PRSs are being introduced into clinical practice, there is a push to combine them with clinical and demographic risk factors to develop a holistic disease risk. The existing evidence regarding the clinical utility of PRSs is considered across four different domains: informing population screening programs; guiding therapeutic interventions; refining risk for families at high-risk; and facilitating diagnosis and predicting prognostic outcomes. The evidence for clinical utility in relation to five well-studied disorders is summarized. The potential ethical, legal and social implications are also discussed

    Knowledge and attitudes towards genetic testing in those affected with Parkinson’s disease

    No full text
    Advances in genetic tests provide valuable information for clinicians and patients around risks and inheritance of Parkinson’s Disease (PD); however, questions arise whether those affected or at risk of PD will want genetic testing, particularly given that there are no preventive or disease-modifying therapies currently available. This study sought to determine knowledge and attitudes toward genetic testing for those affected with PD. A cross-sectional study was undertaken using a standardized questionnaire with six multi-choice genetic knowledge and 17 multi-choice attitude items. Participants were selected from a registry of people affected with PD living in Queensland, Australia. Half of the selected index cases had a family history of PD. Ordinal regression was used to evaluate the association between support for genetic testing and demographic, knowledge, and other attitudinal factors. The level of genetic knowledge was relatively low (37 % correct responses). The vast majority supported diagnostic testing (97 %) and 90 % would undertake a genetic test themselves. Support for predictive was lower (78 %) and prenatal genetic testing had the least support (58 %). Benefits of testing were identified as the ability to know the child’s risk, seek therapies, and helping science with finding a cure. Concerns about genetic testing included potential emotional reactions and test accuracy. Genetic knowledge was not significantly associated with attitudes towards genetic testing. Patients with PD have strong interest in genetic testing for themselves with support for diagnostic testing but less support for predictive and prenatal testing. Genetic knowledge was unrelated to testing attitudes

    Causal attributions in an Australian Aboriginal family with Marfan syndrome: a qualitative study

    No full text
    Causal attributions are important determinants of how health threats are processed and affect health-related behaviors. To date, there has been no research on causal attributions in genetic conditions in Aboriginal Australians. Forty members of a large Aboriginal Australian family with Marfan syndrome (MFS) were invited to participate in an ethically approved study exploring causal attributions, including perceived causes of phenotypic variability within the family. Eighteen individuals consented to conduct semi-structured qualitative interviews, which were recorded, transcribed verbatim and analyzed thematically. Most participants knew that MFS was genetic, but there were diverse theories about inheritance, including beliefs that it skipped generations, was affected by birth order and/or gender, and that it co-occurred with inheritance of blue eyes within this family. The mutation was thought to have been inherited from British settlers and initially triggered by disease or diet. Factors believed to modify disease severity included other genes and lifestyle factors, particularly alcohol and substance abuse and stress. Generally, this family did not endorse “blaming” chance or a higher power for phenotypic variability, though some felt that the spirits or a deity may have played a role. In conclusion, although participants knew MFS was a genetic condition, many speculated about the role of non-genetic causes in initiating the original mutation; and the gene-environment interaction was thought to affect severity. This study demonstrates a successful approach for exploring causal attributions in other genetic conditions in First Australians

    Protocol to evaluate a pilot program to upskill clinicians in providing genetic testing for familial melanoma.

    No full text
    IntroductionGenetic testing for hereditary cancers can improve long-term health outcomes through identifying high-risk individuals and facilitating targeted prevention and screening/surveillance. The rising demand for genetic testing exceeds the clinical genetic workforce capacity. Therefore, non-genetic specialists need to be empowered to offer genetic testing. However, it is unknown whether patient outcomes differ depending on whether genetic testing is offered by a genetics specialist or a trained non-genetics clinician. This paper describes a protocol for upskilling non-genetics clinicians to provide genetic testing, randomise high-risk individuals to receive testing from a trained clinician or a genetic counsellor, and then determine whether patient outcomes differed depending on provider-type.MethodsAn experiential training program to upskill dermatologically-trained clinicians to offer genetic testing for familial melanoma is being piloted on 10-15 clinicians, prior to wider implementation. Training involves a workshop, comprised of a didactic learning presentation, case studies, simulated sessions, and provision of supporting documentation. Clinicians later observe a genetic counsellor led consultation before being observed leading a consultation. Both sessions are followed by debriefing with a genetic counsellor. Thereafter, clinicians independently offer genetic testing in the clinical trial. Individuals with a strong personal and/or family history of melanoma are recruited to a parallel-group trial and allocated to receive pre- and post- genetic testing consultation from a genetic counsellor, or a dermatologically-trained clinician. A mixed method approach measures psychosocial and behavioural outcomes. Longitudinal online surveys are administered at five timepoints from baseline to one year post-test disclosure. Semi-structured interviews with both patients and clinicians are qualitatively analysed.SignificanceThis is the first program to upskill dermatologically-trained clinicians to provide genetic testing for familial melanoma. This protocol describes the first clinical trial to compare patient-reported outcomes of genetic testing based on provider type (genetic counsellors vs trained non-genetic clinicians)

    Protocol to evaluate a pilot program to upskill clinicians in providing genetic testing for familial melanoma

    No full text
    Introduction Genetic testing for hereditary cancers can improve long-term health outcomes through identifying high-risk individuals and facilitating targeted prevention and screening/surveillance. The rising demand for genetic testing exceeds the clinical genetic workforce capacity. Therefore, non-genetic specialists need to be empowered to offer genetic testing. However, it is unknown whether patient outcomes differ depending on whether genetic testing is offered by a genetics specialist or a trained non-genetics clinician. This paper describes a protocol for upskilling non-genetics clinicians to provide genetic testing, randomise high-risk individuals to receive testing from a trained clinician or a genetic counsellor, and then determine whether patient outcomes differed depending on provider-type. Methods An experiential training program to upskill dermatologically-trained clinicians to offer genetic testing for familial melanoma is being piloted on 10–15 clinicians, prior to wider implementation. Training involves a workshop, comprised of a didactic learning presentation, case studies, simulated sessions, and provision of supporting documentation. Clinicians later observe a genetic counsellor led consultation before being observed leading a consultation. Both sessions are followed by debriefing with a genetic counsellor. Thereafter, clinicians independently offer genetic testing in the clinical trial. Individuals with a strong personal and/or family history of melanoma are recruited to a parallel-group trial and allocated to receive pre- and post- genetic testing consultation from a genetic counsellor, or a dermatologically-trained clinician. A mixed method approach measures psychosocial and behavioural outcomes. Longitudinal online surveys are administered at five timepoints from baseline to one year post-test disclosure. Semi-structured interviews with both patients and clinicians are qualitatively analysed. Significance This is the first program to upskill dermatologically-trained clinicians to provide genetic testing for familial melanoma. This protocol describes the first clinical trial to compare patient-reported outcomes of genetic testing based on provider type (genetic counsellors vs trained non-genetic clinicians)

    Factors influencing cancer genetic somatic mutation test ordering by cancer physician

    No full text
    Background: Clinical whole exome sequencing was introduced in an Australian centre in 2017, as an alternative to Sanger sequencing. We aimed to identify predictors of cancer physicians’ somatic mutation test ordering behaviour. Methods: A validated instrument assessed somatic mutation test ordering, genomic confidence, perceived utility of tumour molecular profiling, and percent of patients eligible for targeted therapy. A cash incentive was included in 189/244 questionnaires which were mailed to all Queensland cancer specialists in November 2018. Results: 110 participated (response rate 45%); 54.7% oncologists, and the remainder were surgeons, haematologists and pulmonologists. Oncologists were more likely to respond (p = 0.008), and cash incentive improved the response rate (p < 0.001). 67/102 (65.7%) of physicians ordered ≥ 5 somatic mutation tests annually. Oncologists saw 86.75 unique patients monthly and ordered 2.33 somatic mutation tests (2.2%). An average of 51/110 (46.1%) reported having little/no genomic confidence. Logistic regression identified two significant predictors of somatic mutation test ordering: being an oncologist (OR 3.557, CI 1.338–9.456; p = 0.011) and having greater confidence in interpreting somatic results (OR 5.926, CI 2.230–15.74; p < 0.0001). Conclusions: Consistent with previous studies, the majority of cancer physicians ordered somatic mutation tests. However, the percentage of patients on whom tests were ordered was low. Almost half respondents reported low genomic confidence. Somatic mutation test ordering was higher amongst oncologists and those with increased confidence in interpreting somatic variants. It is unclear whether genomically confident individuals ordered more tests or whether ordering more tests increased genomic confidence. Educational interventions could improve confidence and enhance test ordering behaviour
    corecore