92 research outputs found

    Decision-Theoretic Golog with Qualitative Preferences

    Get PDF
    Personalization is becoming increasingly important in agent programming, particularly as it relates to the Web. We propose to develop underspecified, task-specific agent programs, and to automatically personalize them to the preferences of individual users. To this end, we propose a framework for agent programming that integrates rich, non-Markovian, qualitative user preferences expressed in a linear temporal logic with quantitative Markovian reward functions. We begin with DTGOLOG, a first-order, decisiontheoretic agent programming language in the situation calculus. We present an algorithm that compiles qualitative preferences into GOLOG programs and prove it sound and complete with respect to the space of solutions. To integrate these preferences into DTGOLOG we introduce the notion of multiprogram synchronization and restate the semantics of the language as a transition semantics. We demonstrate the utility of this framework with an application to personalized travel planning over the Web. To the best of our knowledge this is the first work to combine qualitative and quantitative preferences for agent programming. Further, while the focus of this paper is on the integration of qualitative and quantitative preferences, a side effect of this work is realization of the simpler task of integrating qualitative preferences alone into agent programming as well as the generation of GOLOG programs from LTL formulae.

    Interpretable Sequence Classification via Discrete Optimization

    Full text link
    Sequence classification is the task of predicting a class label given a sequence of observations. In many applications such as healthcare monitoring or intrusion detection, early classification is crucial to prompt intervention. In this work, we learn sequence classifiers that favour early classification from an evolving observation trace. While many state-of-the-art sequence classifiers are neural networks, and in particular LSTMs, our classifiers take the form of finite state automata and are learned via discrete optimization. Our automata-based classifiers are interpretable---supporting explanation, counterfactual reasoning, and human-in-the-loop modification---and have strong empirical performance. Experiments over a suite of goal recognition and behaviour classification datasets show our learned automata-based classifiers to have comparable test performance to LSTM-based classifiers, with the added advantage of being interpretable

    Computing Contingent Plans via Fully Observable Non-Deterministic Planning

    Get PDF
    Planning with sensing actions under partial observability is a computationally challenging problem that is fundamental to the realization of AI tasks in areas as diverse as robotics, game playing, and diagnostic problem solving. Recent work on generating plans for partially observable domains has advocated for online planning, claiming that offline plans are often too large to generate. Here we push the envelope on this challenging problem, proposing a technique for generating conditional (aka contingent) plans offline. The key to our planner's success is the reliance on state-of-the-art techniques for fully observable non-deterministic (FOND) planning. In particular, we use an existing compilation for converting a planning problem under partial observability and sensing to a FOND planning problem. With a modified FOND planner in hand, we are able to scale beyond previous techniques for generating conditional plans with solutions that are orders of magnitude smaller than previously possible in some domains
    • …
    corecore