370 research outputs found

    Comparison of Three Exit-Area Control Devices on an N.A.C.A. Cowling, Special Report

    Get PDF
    Adjustable cowling flaps, an adjustable-length cowling skirt, and a bottom opening with adjustable flap were tested as means of controlling the rate of cooling-air flow through an air-cooled radial-engine cowling. The devices were tested in the NACA 20-foot tunnel on a model wing-nacelle-propeller combination, through an airspeed range of 20 to 80 miles per hour, and with the propeller blade angle set 23 degrees at 0.75 of the tip radius. The resistance of the engine to air flow through the cowling was simulated by a perforated plate. The results indicated that the adjustable cowling flap and the bottom opening with adjustable flap were about equally effective on the basis of pressure drop obtainable and that both were more effective means of increasing the pressure drop through the cowling than the adjustable-length skirt. At conditions of equal cooling-air flow, the net efficiency obtained with the adjustable cowling flaps and the adjustable-length cowling skirt was about 1% greater than the net efficiency obtained with the bottom opening with adjustable flap

    Tests of Several Model Nacelle-Propeller Arrangements in Front of a Wing

    Get PDF
    An investigation was conducted in the N.A.C.A. 20-foot wind tunnel to determine the drag, the propulsive and net efficiencies, and the cooling characteristics of severa1 scale-model arrangements of air-cooled radial-engine nacelles and present-day propellers in front of an 18- percent-thick, 5- by 15-foot airfoil. This report deals with an investigation of wing-nacelle arrangements simulating the geometric proportions of airplanes in the 40,000- to 70,000- pound weight classification and having the nacelles located in the vicinity of the optimum location determined from the earlier tests

    Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings IV : Thick Wing - Various Radial-Engine Cowlings - Tandem Propellers

    Get PDF
    This report is the fourth of a series giving the results obtained from wind tunnel tests to determine the interference lift and drag and propulsive efficiency of wing-nacelle-propeller combinations. Previous reports give the results of tests with tractor propellers with various forms of nacelles and engine cowlings. This report gives the results of tests of tandem arrangements of engines and propellers in 11 positions with reference to a thick wing

    A summary and analysis of the low-speed longitudinal characteristics of swept wings at high Reynolds number

    Get PDF
    An analysis of the longitudinal characteristics of swept wings which is based on available large-scale low-speed data and supplemented with low-scale data when feasible is presented. The emphasis has been placed on the differentiation of the characteristics by a differentiation between the basic flow phenomenon involved. Insofar as possible all large-scale data available as of August 15, 1951 have been summarized in tabular form for ready reference

    The Characteristics of Two Model Six-blade Counterrotating Pusher Propellers of Conventional and Improved Aerodynamic Design

    Get PDF
    Two airfoil plans were used for propeller blades. One is modified Clark Y section designed for structural reliability and the second an NACA 16 airfoil section designed to produce minimum aerodynamic losses. At low air speeds, the propeller designed for aerodynamic effects showed a gain of from 1.5 to 4.0 percent in propulsive efficiency over the conventional type depending on the pitch. Because of the numerous variables involved, the effect of each one on the aerodynamic characteristics of the propellers could not be isolated

    Stacking-Mediated Diffusion of Ruthenium Nanoclusters in Graphite

    Full text link
    The diffusion, penetration and intercalation of metallic atomic dopants is an important question for various graphite applications in engineering and nanotechnology. We have performed systematic first-principles calculations of the behaviour of ruthenium nanoclusters on a graphene monolayer and intercalated into a bilayer. Our computational results show that at a sufficiently high density of single Ru atom interstitials, intercalated atoms can shear the surrounding lattice to an AA stacking configuration, an effect which weakens with increasing cluster size. Moreover, the interlayer stacking configuration, in turn, has a significant effect on cluster diffusion. We therefore find different trends in diffusivity as a function of cluster size and interlayer stacking. For monolayer graphene and an AA graphene bilayer, the formation of small clusters generally lowers diffusion barriers, while the opposite behaviour is found for the preferred AB stacking configuration. These results demonstrate that conditions of local impurity concentration and interlayer disregistry are able to regulate the diffusivity of metallic impurities in graphite.Comment: 11 pages, 10 figure

    Ripplocations in Layered Materials: Sublinear Scaling and Basal Climb

    Full text link
    The ripplocation is a crystallographic defect which is unique to layered materials, combining nanoscale delamination with the crystallographic slip of a basal dislocation. Here, we have studied basal dislocations and ripplocations, in single and multiple van der Waals layers, using analytical and computational techniques. Expressions for the energetic and structural scaling factors of surface ripplocations are derived, which are in close correspondence to the physics of a classical carpet ruck. Our simulations demonstrate that the lowest-energy structure of dislocation pile-ups in layered materials is the ripplocation, while large dislocation pile-ups in bulk graphite demonstrate multilayer delamination, curvature and voids. This can provide a concise explanation for the large volumetric expansion seen in irradiated graphite.Comment: 7 pages, 6 figure

    The Effect of Nacelle-Propeller Diameter Ratio on Body Interference and on Propeller and Cooling Characteristics

    Get PDF
    Report presents the results of an investigation conducted in the NACA 20-foot tunnel to determine the slipstream drag, the body interference, and the cooling characteristics of nacelle-propeller diameter. Four combinations of geometrically similar propellers and nacelles, mounted on standard wing supports, were tested with values of the ratio of nacelle diameter to propeller diameter of 0.25, 0.33, and 0.44

    Progress Report on Cowlings for Air-Cooled Engines Investigated in the NACA 19-Foot Pressure Wind Tunnel

    Get PDF
    At the present time there is considerable demand for improvement in the aerodynamic characteristics of cowlings for radial air-cooled aircraft engines. During the past year, numerous cowling arrangements have been investigated in various departments of the NACA laboratory. Although a few full-scale investigation have been carried out, most of the studies have been preliminary in nature and have been confined to the investigation of model arrangement in wind tunnels. Because of the existing national emergency it appears advisable to release immediately to the aircraft industry the information available on the more promising of the arrangements that have been studied. An investigation having as its aim the improvement in performance and flying qualities of single-engine air-cooled military pursuit airplanes is being conducted in the NACA 10-foot pressure wind tunnel. As a part of that investigation, studies have been made of the relative merits of a conventional NACA open-nose cowling arrangement and of a less conventional but better streamline NACA high-speed cowling arrangement in which the cooling air enters the cowling through an opening ahead of the propeller, passes internally through an element of the cowling which rotates with the propeller, and thence past the engine cylinders to the exit at the rear of the engine. These investigations indicate that at airplane speeds of around 400 miles per hour there is not a great deal to be gained in high-speed performance through the application of the latter cowling arrangement, but at speeds in excess of about 450 miles per hour a very appreciable gain is indicated. Present indications are that improved engine cooling can be obtained throughout the speed range as well as ground cooling through the use of the high-speed cowling. This paper summarizes the results obtained from wind-tunnel tests of models of the two cowling arrangements
    corecore