58 research outputs found

    Sonodynamic inactivation of Gram-positive and Gram-negativebacteria using a Rose Bengal–antimicrobial peptide conjugate

    Get PDF
    Combating antimicrobial resistance is one of the most serious public health challenges facing society today. The development of new antibiotics or alternative techniques that can help combat antimicrobial resistance is being prioritised by many governments and stakeholders across the globe. Antimicrobial photodynamic therapy is one such technique that has received considerable attention but is limited by the inability of light to penetrate through human tissue, reducing its effectiveness when used to treat deep-seated infections. The related technique sonodynamic therapy (SDT) has the potential to overcome this limitation given the ability of low-intensity ultrasound to penetrate human tissue. In this study, a Rose Bengal–antimicrobial peptide conjugate was prepared for use in antimicrobial SDT (ASDT). When Staphylococcus aureus and Pseudomonas aeruginosa planktonic cultures were treated with the conjugate and subsequently exposed to ultrasound, 5 log and 7 log reductions, respectively, in bacterial numbers were observed. The conjugate also displayed improved uptake by bacterial cells compared with a mammalian cell line (P ≤ 0.01), whilst pre-treatment of a P. aeruginosa biofilm with ultrasound resulted in a 2.6-fold improvement in sensitiser diffusion (P ≤ 0.01). A preliminary in vivo experiment involving ASDT treatment of P. aeruginosa-infected wounds in mice demonstrated that ultrasound irradiation of conjugate-treated wounds affects a substantial reduction in bacterial burden. Combined, the results obtained from this study highlight ASDT as a targeted broad-spectrum novel modality with potential for the treatment of deep-seated bacterial infections

    Targeted Chemo-Sonodynamic Therapy Treatment of Breast Tumours Using Ultrasound Responsive Microbubbles Loaded with Paclitaxel, Doxorubicin and Rose Bengal.

    Get PDF
    Mastectomy is a common surgical treatment used in the management of breast cancer but has associated physical and psychological consequences for the patient. Breast conservation surgery (BCS) is an alternative to mastectomy but is only possible when the tumour is of an appropriate size. Neo-adjuvant chemotherapy has been successfully used to downstage tumours and increase the number of patients eligible for BCS. However, the chemotherapies used in this approach are non-targeted and often result in significant side effects to the patient. In this manuscript, we evaluate the potential of ultrasound targeted microbubble destruction (UTMD) to deliver Rose Bengal-mediated sonodynamic therapy (SDT) in combination with paclitaxel (PTX) and doxorubicin (Dox) chemotherapy as a potential treatment for breast cancer. Efficacy of the combined treatment was determined in a three-dimensional (3D) spheroid model of human breast cancer and in a murine model of the disease bearing subcutaneous MCF-7 tumours. The results demonstrated a significant reduction in both the cell viability of spheroids and tumour volume following treatment with the drug loaded microbubbles and ultrasound compared to targets treated with the drug loaded microbubbles alone or a Cremophor EL suspension of PTX and Dox. In addition, the weight of animals that received the microbubble treatment was unchanged throughout the study while a reduction of 12.1% was observed for animals treated with a Cremophor suspension of PTX/Dox. These results suggest that UTMD-mediated chemo-sonodynamic therapy is an efficacious and well tolerated approach for the treatment of breast cancer

    Iodinated Cyanine Dyes: A New Class of Sensitisers for use in NIR Activated Photodynamic Therapy (PDT)

    Get PDF
    Iodinated cyanine dye 6a has been developed for use as a NIR excited photosensitiser in photodynamic therapy.</p

    Investigating the performance of a novel pH and cathepsin B sensitive, stimulus-responsive nanoparticle for optimised sonodynamic therapy in prostate cancer

    Get PDF
    Nano-formulations that are responsive to tumour-related and externally-applied stimuli can offer improved, site-specific antitumor effects, and can improve the efficacy of conventional therapeutic agents. Here, we describe the performance of a novel stimulus-responsive nanoparticulate platform for the targeted treatment of prostate cancer using sonodynamic therapy (SDT). The nanoparticles were prepared by self-assembly of poly(L-glutamic acid-L-tyrosine) co-polymer with hematoporphyrin. The nanoparticulate formulation was characterized with respect to particle size, morphology, surface charge and singlet oxygen production during ultrasound exposure. The response of the formulation to the presence of cathepsin B, a proteolytic enzyme that is overexpressed and secreted in the tumour microenvironment of many solid tumours, was assessed. Our results showed that digestion with cathepsin B led to nanoparticle size reduction. In the absence of ultrasound, the formulation exhibited greater toxicity at acidic pH than at physiological pH, using the human prostate cells lines LNCaP and PC3 as targets. Nanoparticle cellular uptake was enhanced at acidic pH – a condition that was also associated with greater cathepsin B production. Nanoparticles exhibited enhanced ultrasound-induced cytotoxicity against both prostate cancer cell lines. Subsequent proof-of-concept in vivo studies demonstrated that, when ectopic human xenograft LNCaP tumours in SCID mice were treated with SDT using the systemically-administered nanoparticulate formulation at a single dose, tumour volumes decreased by up to 64% within 24 h. No adverse effects were observed in the nanoparticle-treated mice and their body weight remained stable. The potential of this novel formulation to deliver safe and effective treatment of prostate cancer is discussed

    Orally administered oxygen nanobubbles enhance tumor response to sonodynamic therapy

    Get PDF
    Suspensions of oxygen-filled bubbles are under active investigation as potential means of relieving tissue hypoxia. Intravenous administration of large quantities of bubbles is, however, undesirable. Previous work by the authors has demonstrated that tumor oxygen levels can be increased following oral administration of phospholipid stabilized oxygen nanobubbles. The aim of this study was to determine whether this would enhance the efficacy of sonodynamic therapy (SDT), which is known to be inhibited in hypoxic tissue. Experiments were conducted in a murine model of pancreatic cancer. Animals were treated with SDT (intratumoural injection of 1 mM Rose Bengal followed by exposure to 1 MHz ultrasound, 0.1 kHz pulse repetition frequency, 30% duty cycle, 3.5 W cm−2 for 3.5 minutes) either with or without a prior gavage of oxygen bubbles. A statistically significant reduction in the rate of tumor growth was observed in the groups receiving oxygen nanobubbles either 5 or 20 minutes before SDT. Separate measurements of tumor oxygen using a fiber optic probe and expression of hypoxia inducible factor (HIF)1α following tumor excision, confirmed the change in tumor oxygen levels. These findings offer a potentially promising new approach to relieving tissue hypoxia in order to facilitate cancer therapy
    • …
    corecore