19 research outputs found

    Oxygen surface exchange and diffusion in fast ionic conductors

    Get PDF
    The rate of oxygen surface exchange on selected bulk oxides exhibiting enhanced oxygen ion conductivity has been derived by measuring 18O penetration profiles using a high sensitivity dynamic SIMS technique. These values for the oxygen surface exchange coefficient (K) were used to derive the steady-state oxygen fluxes through the oxide surface for conditions when the bulk oxide was in equilibrium with 1 atm. of oxygen at 500 and 700°C. The oxygen fluxes were transformed into current fluxes and compared with available exchange current densities (iO) measured using electrochemical techniques. The two sets of current densities exhibited large differences for zirconia based electrolytes which confirmed the important role of platinum as an electro-catalyst. However for bismuth based electrolytes good agreement was noted between the two sets of iO values. It was concluded therefore that the dissociative adsorption of oxygen occurred predominately on the surface of the Bi2O3 based electrolyte and that the presence of a metal electrode (Pt or Au) had little effect upon the overall exchange current kinetics

    Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs

    Get PDF
    A high level of water repellency in soils has an impact on soil hydrology, plant growth and soil erosion. Studies have been performed previously on model soils; consisting of close packed layers of glass spheres (140–400 μm in diameter), to mimic the behaviour of rain water on water repellent soils. In this study measurements were performed on multi-layered bead packs, to assess the interaction of water drops impacting layers consisting of different hydrophobic and hydrophilic layers. A high speed video camera was used to record the impact behaviour of water droplets on the bead packs focussing on the spreading of the droplet and the subsequent rebound behaviour of the droplet. Observations were made from the videos of the liquid marble effect on the droplet, whereby hydrophobic particles form a coating around the droplet, and how it differed depending on the arrangement of hydrophobic and hydrophilic layers within the bead pack. The droplet release height was varied in order to establish a relationship between impact velocity and the degree to which liquid marbling occurs, with higher impact speeds leading to a greater degree of liquid marbling. Measurements were also made to find the transition speeds between the three rebound conditions; rebound, pinning and fragmentation, showing an overall decrease in pinning velocity as the bead size increased

    Modification of ZrB 2

    No full text

    Oxygen surface exchange and diffusion in fast ionic conductors

    No full text
    The rate of oxygen surface exchange on selected bulk oxides exhibiting enhanced oxygen ion conductivity has been derived by measuring 18O penetration profiles using a high sensitivity dynamic SIMS technique. These values for the oxygen surface exchange coefficient (K) were used to derive the steady-state oxygen fluxes through the oxide surface for conditions when the bulk oxide was in equilibrium with 1 atm. of oxygen at 500 and 700°C. The oxygen fluxes were transformed into current fluxes and compared with available exchange current densities (iO) measured using electrochemical techniques. The two sets of current densities exhibited large differences for zirconia based electrolytes which confirmed the important role of platinum as an electro-catalyst. However for bismuth based electrolytes good agreement was noted between the two sets of iO values. It was concluded therefore that the dissociative adsorption of oxygen occurred predominately on the surface of the Bi2O3 based electrolyte and that the presence of a metal electrode (Pt or Au) had little effect upon the overall exchange current kinetics

    Microarray analysis of gene expression in peripheral blood mononuclear cells from dioxin-exposed human subjects

    No full text
    Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen and exerts toxic effects on the skin (chloracne). Effects on reproductive, immunological, and endocrine systems have also been observed in animal models. TCDD acts through the aryl hydrocarbon receptor (AhR) pathway influencing largely unknown gene networks. An industrial accident in Seveso, Italy in 1976 exposed thousands of people to substantial quantities of TCDD. Twenty years after the exposure, this study examines global gene expression in the mononuclear cells of 26 Seveso female never smokers, with similar age, alcohol consumption, use of medications, and background plasma levels of 22 dioxin congeners unrelated to the Seveso accident. Plasma dioxin levels were still elevated in the exposed subjects. We performed analyses in two different comparison groups. The first included high-exposed study subjects compared with individuals with background TCDD levels (average plasma levels 99.4 and 6.7ppt, respectively); the second compared subjects who developed chloracne after the accident, and those who did not develop this disease. Overall, we observed a modest alteration of gene expression based on dioxin levels or on chloracne status. In the comparison between high levels and background levels of TCDD, four histone genes were up-regulated and modified expression of HIST1H3H was confirmed by real-time PCR. In the comparison between chloracne case-control subjects, five hemoglobin genes were up-regulated. Pathway analysis revealed two major networks for each comparison, involving cell proliferation, apoptosis, immunological and hematological disease, and other pathways. Further examination of the role of these genes in dioxin induced-toxicity is warranted

    Equilibrium Phase Diagrams

    No full text

    Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms.

    Get PDF
    Benzene is an established cause of leukemia, and possibly lymphoma, in humans, but the underlying molecular pathways remain largely undetermined. We used two microarray platforms to identify global gene expression changes associated with well-characterized occupational benzene exposure in the peripheral blood mononuclear cells (PBMC) of a population of shoe-factory workers. Differential expression of 2692 genes (Affymetrix) and 1828 genes (Illumina) was found and the concordance was 50% (based on an average fold-change > or =1.3 from the two platforms), with similar expression ratios among the concordant genes. Four genes (CXCL16, ZNF331, JUN and PF4), which we previously identified by microarray and confirmed by real-time PCR, were among the top 100 genes identified by both platforms in the current study. Gene ontology analysis showed overrepresentation of genes involved in apoptosis among the concordant genes while pathway analysis identified pathways related to lipid metabolism. The two-platform approach allows for robust changes in the PBMC transcriptome of benzene-exposed individuals to be identified
    corecore