118 research outputs found

    Non-perturbative results for the spectrum of surface-disordered waveguides

    Full text link
    We calculated the spectrum of normal scalar waves in a planar waveguide with absolutely soft randomly rough boundaries beyond the perturbation theories in the roughness heights and slopes, basing on the exact boundary scattering potential. The spectrum is proved to be a nearly real non-analytic function of the dispersion ζ2\zeta^2 of the roughness heights (with square-root singularity) as ζ2→0\zeta^2 \to 0. The opposite case of large boundary defects is summarized.Comment: REVTEX 3, OSA style, 9 pages, no figures. Submitted to Optics Letter

    A new application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces

    Full text link
    The small perturbations method has been extensively used for waves scattering by rough surfaces. The standard method developped by Rice is difficult to apply when we consider second and third order of scattered fields as a function of the surface height. Calculations can be greatly simplified with the use of reduced Rayleigh equations, because one of the unknown fields can be eliminated. We derive a new set of four reduced equations for the scattering amplitudes, which are applied to the cases of a rough conducting surface, and to a slab where one of the boundary is a rough surface. As in the one-dimensional case, numerical simulations show the appearance of enhanced backscattering for these structures.Comment: RevTeX 4 style, 38 pages, 16 figures, added references and comments on the satellites peak

    Statistics of Lyapunov exponent in one-dimensional layered systems

    Full text link
    Localization of acoustic waves in a one dimensional water duct containing many randomly distributed air filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties are also explored extensively. The results reveal that in this system the single parameter scaling is generally inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This contradicts the earlier observations in an optical case. We compare the results with two optical cases and give a possible explanation of the origin of the different behaviors.Comment: 6 pages revtex file, 6 eps figure

    Onset of Delocalization in Quasi-1D Waveguides with Correlated Surface Disorder

    Full text link
    We present first analytical results on transport properties of many-mode waveguides with rough surfaces having long-range correlations. We show that propagation of waves through such waveguides reveals a quite unexpected phenomena of a complete transparency for a subset of propagating modes. These modes do not interact with each other and effectively can be described by the theory of 1D transport with correlated disorder. We also found that with a proper choice of model parameters one can arrange a perfect transparency of waveguides inside a given window of energy of incoming waves. The results may be important in view of experimental realizations of a selective transport in application to both waveguides and electron/optic nanodevices.Comment: RevTex, 4 pages, no figures, few references are adde

    Intensity Distribution of Modes in Surface Corrugated Waveguides

    Full text link
    Exact calculations of transmission and reflection coefficients in surface randomly corrugated optical waveguides are presented. As the length of the corrugated part of the waveguide increases, there is a strong preference to forward coupling through the lowest mode. An oscillating behavior of the enhanced backscattering as a function of the wavelength is predicted. Although the transport is strongly non isotropic, the analysis of the probability distributions of the transmitted waves confirms in this configuration distributions predicted by Random Matrix Theory for volume disorder

    Acoustic Attenuation by Two-dimensional Arrays of Rigid Cylinders

    Full text link
    In this Letter, we present a theoretical analysis of the acoustic transmission through two-dimensional arrays of straight rigid cylinders placed parallelly in the air. Both periodic and completely random arrangements of the cylinders are considered. The results for the sound attenuation through the periodic arrays are shown to be in a remarkable agreement with the reported experimental data. As the arrangement of the cylinders is randomized, the transmission is significantly reduced for a wider range of frequencies. For the periodic arrays, the acoustic band structures are computed by the plane-wave expansion method and are also shown to agree with previous results.Comment: 4 pages, 3 figure

    Mobility Edge in Aperiodic Kronig-Penney Potentials with Correlated Disorder: Perturbative Approach

    Full text link
    It is shown that a non-periodic Kronig-Penney model exhibits mobility edges if the positions of the scatterers are correlated at long distances. An analytical expression for the energy-dependent localization length is derived for weak disorder in terms of the real-space correlators defining the structural disorder in these systems. We also present an algorithm to construct a non-periodic but correlated sequence exhibiting desired mobility edges. This result could be used to construct window filters in electronic, acoustic, or photonic non-periodic structures.Comment: RevTex, 4 pages including 2 Postscript figure

    Long-range order and low-energy spectrum of diluted 2D quantum AF

    Full text link
    The problem of diluted two-dimensional (2D) quantum antiferromagnet (AF) on a square lattice is studied using spin-wave theory. The influence of impurities on static and dynamic properties is investigated and a good agreement with experiments and Monte Carlo (MC) data is found. The hydrodynamic description of spin-waves breaks down at characteristic wavelengths \Lambda\agt\exp(\frac{const}{x}), xx being an impurity concentration, while the order parameter is free from anomalies. We argue that this dichotomy originates from strong scattering of the low-energy excitations in 2D.Comment: PRL Award received, 4 pages, 3 figure

    Self-trapping and stable localized modes in nonlinear photonic crystals

    Full text link
    We predict the existence of stable nonlinear localized modes near the band edge of a two-dimensional reduced-symmetry photonic crystal with a Kerr nonlinearity. Employing the technique based on the Green function, we reveal a physical mechanism of the mode stabilization associated with the effective nonlinear dispersion and long-range interaction in the photonic crystals.Comment: 4 pages (RevTex) with 5 figures (EPS
    • …
    corecore