235 research outputs found

    Determining fluvial sediment virtual velocity on the Mojave River using K-feldspar IRSL: Initial assessment

    Get PDF
    The Mojave River of Southern California was chosen as a field site to investigate the applicability of luminescence dating to sediment transport rate problems. Grains in the active channel of the river are expected to show signs of partial bleaching and this makes it difficult to determine time since deposition accurately. A modification of the multiple elevated temperature post-IR IRSL (MET-pIRIR) procedure, (Buylaert et al., 2009; Li and Li, 2011), was used for K-feldspar grains (175-200 Όm) at temperature increments of 50, 95, 140, 185, and 230 °C in order to provide more information about relative signal bleaching among samples. The measurements show an exponential decrease in equivalent dose (De) with distance down the Mojave River. Higher temperature pIRIR signals are bleached more slowly than lower temperature ones (Buylaert et al., 2009). The De for samples at 50 °C is roughly constant along the river. These results suggest cyclical bleaching and burial as grains are transported downriver and higher energy (deeper) traps are vacated. The pattern of De values for the Mojave River can be used to constrain the sediment transport rate for this river by building a model of growth and bleach for each temperature increment. A bleaching experiment was run with multiple aliquot samples for direct sunlight exposure times of 0, 10, 30, 300, 1000, 3000, 10,000, and 30,000 s. The MET-pIRIR procedure was applied at each temperature increment for each exposure time aliquot and the results for all exposure times were fit to the general order kinetics equation using a non-linear regression. The bleaching parameters were used in conjunction with the SAR growth curves to build a model of partial bleaching of grains during transport that is fitted with a c2 test to the pIRIR data from the Mojave River. This model is not a unique solution, but can be used to assess the likelihood of various sediment transport regime

    On extracting sediment transport information from measurements of luminescence in river sediment

    Get PDF
    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications

    Population control of 2s-2p transitions in hydrogen

    Full text link
    We consider the time evolution of the occupation probabilities for the 2s-2p transition in a hydrogen atom interacting with an external field, V(t). A two-state model and a dipole approximation are used. In the case of degenerate energy levels an analytical solution of the time-dependent Shroedinger equation for the probability amplitudes exists. The form of the solution allows one to choose the ratio of the field amplitude to its frequency that leads to temporal trapping of electrons in specific states. The analytic solution is valid when the separation of the energy levels is small compared to the energy of the interacting radiation.Comment: 6 pages, 3 figure

    A 2000 yr paleoearthquake record along the Conway segment of the Hope fault : implications for patterns of earthquake occurrence in northern South Island and southern North Island, New Zealand

    Get PDF
    Paleoseismic trenches excavated at two sites reveal ages of late Holocene earthquakes along the Conway segment of the Hope fault, the fastest‐slipping fault within the Marlborough fault system in northern South Island, New Zealand. At the Green Burn East (GBE) site, a fault‐perpendicular trench exposed gravel colluvial wedges, fissure fills, and upward fault terminations associated with five paleo‐surface ruptures. Radiocarbon age constraints indicate that these five earthquakes occurred after 36 B.C.E., with the four most recent surface ruptures occurring during a relatively brief period (550 yr) between about 1290 C.E. and the beginning of the historical earthquake record about 1840 C.E. Additional trenches at the Green Burn West (GBW) site 1.4 km west of GBE reveal four likely coseismically generated landslides that occurred at approximately the same times as the four most recent GBE paleoearthquakes, independently overlapping with age ranges of events GB1, GB2, and GB3 from GBE. Combining age constraints from both trench sites indicates that the most recent event (GB1) occurred between 1731 and 1840 C.E., the penultimate event GB2 occurred between 1657 and 1797 C.E., GB3 occurred between 1495 and 1611 C.E., GB4 occurred between 1290 and 1420 C.E., and GB5 occurred between 36 B.C.E. and 1275 C.E. These new data facilitate comparisons with similar paleoearthquake records from other faults within the Alpine–Hope–Jordan–Kekerengu–Needles–Wairarapa (Al‐Hp‐JKN‐Wr) fault system of throughgoing, fast‐slip‐rate (⁠≄10  mm/yr⁠) reverse‐dextral faults that accommodate a majority of Pacific–Australia relative plate boundary motion. These comparisons indicate that combinations of the faults of the Al‐Hp‐JKN‐Wr system may commonly rupture within relatively brief, ≀100‐year‐long sequences, but that full “wall‐to‐wall” rupture sequences involving all faults in the system are rare over the span of our paleoearthquake data. Rather, the data suggest that the Al‐Hp‐JKN‐Wr system may commonly rupture in subsequences that do not involve the entire system, and potentially, at least sometimes, in isolated events

    Evolution and progressive geomorphic manifestation of surface faulting: A comparison of the Wairau and Awatere faults, South Island, New Zealand

    Get PDF
    Field mapping and lidar analysis of surface faulting patterns expressed in flights of geologically similar fluvial terraces at the well-known Branch River and Saxton River sites along the Wairau (Alpine) and Awatere strike-slip faults, South Island, New Zealand, reveal that fault-related deformation patterns expressed in the topography at these sites are markedly less structurally complex along the higher-displacement (hundreds of kilometers), structurally mature Wairau fault than along the Awatere fault (∌13–20 km total slip). These differences, which are generally representative of the surface traces of these faults, provide direct evidence that surface faulting becomes structurally simpler with increasing cumulative fault offset. We also examine the degree to which off-fault deformation (OFD) is expressed in the landscape at the Saxton River site along the less structurally mature Awatere fault. Significantly greater amounts of OFD are discernible as a wide damage zone (∌460 m fault-perpendicular width) in older (ca. 15 ka), more-displaced (64–74 m) fluvial terraces than in younger (ca. 1–7 ka), less-displaced (<55 m) terraces; no OFD is discernible in the lidar data on the least-displaced (<35 m) terraces. From this, we infer that OFD becomes progressively more geomorphically apparent with accumulating displacement. These observations imply that (1) the processes that accommodate OFD are active during each earthquake, but may not be evident in deposits that have experienced relatively small displacements; (2) structures accommodating OFD will become progressively geomorphically clearer with increasing displacement; (3) geomorphic measurements of overall fault zone width taken in deposits that have experienced small displacements will be underestimates; and (4) fault slip rates based on geomorphic surface offsets will be underestimates for immature faults if based solely on measurements along the high-strain fault core

    Highly variable latest Pleistocene-Holocene incremental slip rates on the Awatere fault at Saxton River, South Island, New Zealand, revealed by lidar mapping and luminescence dating

    Get PDF
    Geomorphic mapping using high-resolution lidar imagery and luminescence dating reveal highly variable incremental Holocene-latest Pleistocene slip rates at the well-known Saxton River site along the Awatere fault, a dextral strike-slip fault in the Marlborough Fault System, South Island, New Zealand. Using lidar and field observations, we measured seven fault offsets recorded by fluvial terraces and bedrock markers. Improved dating of the offsets is provided by post-IR-IRSL225 luminescence ages. Incremental slip rates varied from 15 mm/yr over intervals of thousands of years and tens of meters of slip, demonstrating order-of-magnitude temporal variations in rate at a single site. These observations have basic implications for earthquake fault behavior, lithospheric mechanics, discrepancies between geodetic and geologic slip rates, and probabilistic seismic hazard assessment

    Bladder neck mobility in continent nulliparous women

    Full text link
    To evaluate the mobility of the vesical neck during coughing and valsalva in healthy nulliparous volunteers and to test the reliability of the technique applied. Design Clinical observational study. Setting Department of Obstetrics and Gynaecology, Cantonal Hospital Lucerne, Switzerland. Population Thirty-nine nulliparous volunteers. Methods Vesical neck motion was assessed with perineal ultrasound. Intra–abdominal pressure was controlled for with an intrarectal probe. Intra-rater reliability was evaluated. Results Vesical neck mobility was significantly lower during coughing (8 mm, SD 4 mm) than during valsalva (15 mm, SD 10 mm) ( P < 0.005 ). Between individuals mobility varied from 4 mm to 32 mm during coughing and from 2 mm to 31 mm during valsalva. Test-retest-studies showed a maximum difference between to tests during coughing of 4 mm and during valsalva of 5 mm. Conclusion The bladder neck is mobile in normal continent women and bladder neck mobility is lower during coughing than during Valsalva.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74987/1/j.1471-0528.2001.00066.x.pd

    Holocene to latest Pleistocene incremental slip rates from the east-central Hope fault (Conway segment) at Hossack Station, Marlborough fault system, South Island, New Zealand: Towards a dated path of earthquake slip along a plate boundary fault

    Get PDF
    Geomorphic field and aerial lidar mapping, coupled with fault-parallel trenching, reveals four progressive offsets of a stream channel and an older offset of the channel headwaters and associ­ated fill terrace–bedrock contact at Hossack Station along the Conway segment of the Hope fault, the fastest-slipping fault within the Marlborough fault system in northern South Island, New Zealand. Radiocarbon and luminescence dating of aggra­dational surface deposition and channel initiation and abandonment event horizons yields not only an average dextral rate of ~15 mm/yr since ca. 14 ka, but also incremental slip rates for five different time periods (spanning hundreds to thousands of years) during Holocene to latest Pleistocene time. These incremental rates vary through time and are, from youngest to oldest: 8.2 +2.7/−1.5 mm/yr averaged since 1.1 ka; 32.7 +~124.9/−10.1 mm/yr averaged over 1.61–1.0 ka; 19.1 ± 0.8 mm/yr between 5.4 and 1.6 ka; 12.0 ± 0.9 mm/yr between 9.4 and 5.4 ka, and 13.7 +4.0/−3.4 mm/yr from 13.8 to 9.4 ka, with generally faster rates in the mid- to late Holocene relative to slower rates prior to ca. 5.4 ka. The most pronounced variation in rates occurs between the two youngest intervals, which are averaged over shorter time spans (≀1700 yr) than the three older incremental rates (3700–4500 yr). This suggests that the factor of ~1.5× variations in Hope fault slip rate observed in the three older, longer- duration incremental rates may mask even greater temporal variations in rate over shorter time scales

    Multimillennial incremental slip rate variability of the Clarence fault at the Tophouse Road site, Marlborough Fault System, New Zealand

    Get PDF
    Incremental slip rates of the Clarence fault, a dextral fault in the Marlborough fault system of South Island, New Zealand, varied by a factor of 4–5 during Holocene–latest Pleistocene time, as revealed by geomorphic mapping and luminescence dating of faulted fluvial landforms at the Tophouse Road site. We used high-resolution lidar microtopographic data and field surveys to map the fine-scale geomorphology and precisely restore the offset features. We dated the offsets using a stratigraphically informed protocol for infrared stimulated luminescence dating. These data show that incremental slip rates varied from ~2.0 to 9.6 mm/year, averaged over multiple earthquakes and millennial timescales. Comparison to incremental slip rates of the nearby Awatere fault suggests that these faults may behave in coordinated (and anticorrelated) fashion. This study adds to a growing body of evidence suggesting that incremental slip rate variation spanning multiple earthquake cycles may be more common than previously recognized

    Relativistic K shell decay rates and fluorescence yields for Zn, Cd and Hg

    Full text link
    In this work we use the multiconfiguration Dirac-Fock method to calculate the transition probabilities for all possible decay channels, radiative and radiationless, of a K shell vacancy in Zn, Cd and Hg atoms. The obtained transition probabilities are then used to calculate the corresponding fluorescence yields which are compared to existing theoretical, semi-empirical and experimental results
    • 

    corecore