250 research outputs found

    The futility of genomic counseling: essential role of electronic health records

    Get PDF
    Technological advances over the past several years have dramatically reduced the cost of whole-genome sequencing. At the same time, understanding of the functional significance of genetic variation has advanced considerably. The routine generation of whole-genome sequence data for individual patients will soon be sufficiently cost-effective for widespread clinical integration. Yet, the clinical utility of whole-genome data is currently limited by an inability to effectively process, store, interpret and update genomic data, while at the same time protecting patient privacy. Enter the electronic health record. We propose that without the integration of a dynamic uniform electronic health record, counseling patients on the basis of genome-wide data will be futile

    The need for medical education reform: genomics and the changing nature of health information

    Get PDF
    No course in genetics can prepare the practicing physician to interpret whole-genome data. We argue that genetics is a microcosm of the changing dynamics of the practice of medicine. It illustrates the perfect storm of exponential increases in raw data with undetermined clinical relevance, ease of access to large amounts of data via the internet and shifting expectations of the doctor-patient relationship and the very mechanisms of health care delivery. Educational reform is needed across the continuum of medical education, from the student to the faculty training them, and requires a shift in focus from factual knowledge to data management and interpretation

    Exploring the ELSI universe: critical issues in the evolution of human genomic research

    Get PDF
    A report on the National Human Genome Research Institute's Ethical, Legal, and Social Implications Research Program 2011 Congress, 'Exploring the ELSI Universe', Chapel Hill, North Carolina, USA, 12-14 April 2011

    How behavioral economics can help to avoid ‘The last mile problem’ in whole genome sequencing

    Get PDF
    Editorial summary Failure to consider lessons from behavioral economics in the case of whole genome sequencing may cause us to run into the ‘last mile problem’ - the failure to integrate newly developed technology, on which billions of dollars have been invested, into society in a way that improves human behavior and decision-making

    Principal Investigator Views of the IRB System

    Get PDF
    We undertook a qualitative e-mail survey of federally-funded principal investigators of their views of the US human subjects protection system, intended to identify the range of investigator attitudes. This was an exploratory study with a 14% response rate. Twenty-eight principal investigators responded; their comments were analyzed to show underlying themes, which are here presented along with supporting quotations

    Operationalizing Professionalism: A Course in Ethical Decision Making

    Get PDF
    All U.S. medical schools require some medical ethics education and must now ensure that their graduates, residents, and faculty exhibit competence in the area of professionalism and professional medical ethics. However, there remain many challenges to implementing formal ethics and professionalism education into medical school curricula. [See PDF for complete abstract

    The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome

    Get PDF
    The Human Microbiome Project (HMP) [1],[2] is a concept that was long in the making. After the Human Genome Project, interest grew in sequencing the “other genome" of microbes carried in and on the human body [3],[4]. Microbial ecologists, realizing that >99% of environmental microbes could not be easily cultured, developed approaches to study microorganisms in situ [5], primarily by sequencing the 16S ribosomal RNA gene (16S) as a phylogenetic and taxonomic marker to identify members of microbial communities [6]. The need to develop corresponding new methods for culture-independent studies [7],[8] in turn precipitated a sea change in the study of microbes and human health, inspiring the new term “metagenomics" [9] both to describe a technological approach—sequencing and analysis of the genes from whole communities rather than from individual genomes—and to emphasize that microbes function within communities rather than as individual species. This shift from a focus on individual organisms to microbial interactions [10] culminated in a National Academy of Science report [11], which outlined challenges and promises for metagenomics as a way of understanding the foundational role of microbial communities both in the environment and in human health.National Institutes of Health (U.S.) (grant U54HG004969)National Institutes of Health (U.S.) (grant U54HG004973)National Institutes of Health (U.S.) (grant U54AI084844)National Institutes of Health (U.S.) (grant U01HG004866)National Institutes of Health (U.S.) (grant R01HG005969)National Institutes of Health (U.S.) (grant R01HG004872)United States. Army Research Office (grant W911NF-11-1-0473)National Science Foundation (U.S.) (NSF DBI-1053486)Howard Hughes Medical Institute (Early Career Scientist
    • …
    corecore