865 research outputs found

    Catholics, History, and Conscience

    Get PDF

    Catholics, History, and Conscience

    Get PDF

    A quantum electron star

    Full text link
    We construct and probe a holographic description of state of matter which results from coupling a Fermi liquid to a relativistic conformal field theory (CFT). The bulk solution is described by a quantum gas of fermions supported from collapse into the gravitational well of AdS by their own electrostatic repulsion. In the probe limit studied here, the Landau quasiparticles survive this coupling to a CFT.Comment: 8 pages, 7 figure

    A controlled expansion for certain non-Fermi liquid metals

    Full text link
    The destruction of Fermi liquid behavior when a gapless Fermi surface is coupled to a fluctuating gapless boson field is studied theoretically. This problem arises in a number of different contexts in quantum many body physics. Examples include fermions coupled to a fluctuating transverse gauge field pertinent to quantum spin liquid Mott insulators, and quantum critical metals near a Pomeranchuk transition. We develop a new controlled theoretical approach to determining the low energy physics. Our approach relies on combining an expansion in the inverse number (N) of fermion species with a further expansion in the parameter \epsilon = z_b -2 where z_b is the dynamical critical exponent of the boson field. We show how this limit allows a systematic calculation of the universal low energy physics of these problems. The method is illustrated by studying spinon fermi surface spin liquids, and a quantum critical metal at a second order electronic nematic phase transition. We calculate the low energy single particle spectra, and various interesting two particle correlation functions. In some cases deviations from the popular Random Phase Approximation results are found. Some of the same universal singularities are also calculated to leading non-vanishing order using a perturbative renormalization group calculation at small N extending previous results of Nayak and Wilczek. Implications for quantum spin liquids, and for Pomeranchuk transitions are discussed. For quantum critical metals at a nematic transition we show that the tunneling density of states has a power law suppression at low energies.Comment: 19 pages, 15 figure

    Correlated Topological Insulators and the Fractional Magnetoelectric Effect

    Full text link
    Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk theta term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional theta/pi. We show that fractional theta/pi is only possible in a gapped time reversal invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically non-trivial spaces. We illustrate this result with a concrete example of a time reversal symmetric topological insulator of correlated bosons with theta = pi/4. Extensions to electronic fractional topological insulators are briefly described.Comment: 4 pages + ref

    Adventures in Holographic Dimer Models

    Full text link
    We abstract the essential features of holographic dimer models, and develop several new applications of these models. First, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Second, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.Comment: 22 pages, 8 figures; v2: brief description of case of pure D5 lattice added in sec.3; v3: minor typo fixed; v4: minor change

    Holographic Aspects of Fermi Liquids in a Background Magnetic Field

    Full text link
    We study the effects of an external magnetic field on the properties of the quasiparticle spectrum of the class of 2+1 dimensional strongly coupled theories holographically dual to charged AdS4_4 black holes at zero temperature. We uncover several interesting features. At certain values of the magnetic field, there are multiple quasiparticle peaks representing a novel level structure of the associated Fermi surfaces. Furthermore, increasing magnetic field deforms the dispersion characteristics of the quasiparticle peaks from non-Landau toward Landau behaviour. At a certain value of the magnetic field, just at the onset of Landau-like behaviour of the Fermi liquid, the quasiparticles and Fermi surface disappear.Comment: 18 pages, 10 figures. Revised some of the terminology: changed non-separable solutions to infinite-sum solution

    Ghost D-brane, Supersymmetry and Matrix Model

    Full text link
    In this note we study the world volume theory of pairs of D-brane and ghost D-brane, which is shown to have 16 linear supersymmetries and 16 nonlinear supersymmetries. In particular we study a matrix model based on the pairs of D(-1)-brane and ghost D(-1)-brane. Since such pairs are supposed to be equivalent to the closed string vacuum, we expect all 32 supersymmetries should be unbroken. We show that the world volume theory of the pairs of D-brane and ghost D-brane has unbroken 32 supersymmetries even though a half of them are nonlinearly realized.Comment: 12 pages, references adde

    Notes on S-Matrix of Non-critical N=2 String

    Full text link
    In this paper we discuss the scattering S-matrix of non-critical N=2 string at tree level. First we consider the \hat{c}<1 string defined by combining the N=2 time-like linear dilaton SCFT with the N=2 Liouville theory. We compute three particle scattering amplitudes explicitly and find that they are actually vanishing. We also find an evidence that this is true for higher amplitudes. Next we analyze another \hat{c}<1 string obtained from the N=2 time-like Liouville theory, which is closely related to the N=2 minimal string. In this case, we find a non-trivial expression for the three point functions. When we consider only chiral primaries, the amplitudes are very similar to those in the (1,n) non-critical bosonic string.Comment: 27 pages, harvmac, section 5 modified: a relation to (1,n) non-critical bosonic string adde
    • …
    corecore