1,208 research outputs found

    Direction Judgement Errors in Perspective Displays

    Get PDF
    Spatial information transfer characteristics of perspective situation displays were investigated by having eight subjects judge the directions of displayed targets relative to a fixed position in the center of computer generated perspective scenes. Their errors in judging azimuth angles varied sinusoidally with the azimuth of the targets. Errors alternated between clockwise and counterclock wise from one direction quadrant to the next. As the perspective geometry was varied between telephoto lens and wide angle lens views, the direction of error gradually reversed in all quadrants. The results can be explained by systematic differences between the three-dimensional stimulus angles and the perspective projections of those angles onto the display screen

    The Large N Harmonic Oscillator as a String Theory

    Full text link
    We propose a duality between the large-N gauged harmonic oscillator and a novel string theory in two dimensions.Comment: 31 pages, 2 figures; v2: fixed typo

    A quantum electron star

    Full text link
    We construct and probe a holographic description of state of matter which results from coupling a Fermi liquid to a relativistic conformal field theory (CFT). The bulk solution is described by a quantum gas of fermions supported from collapse into the gravitational well of AdS by their own electrostatic repulsion. In the probe limit studied here, the Landau quasiparticles survive this coupling to a CFT.Comment: 8 pages, 7 figure

    Virtual space and 2-dimensional effects in perspective displays

    Get PDF
    When interpreting three dimensional spatial relationships presented on a two dimensional display surface, the viewer is required to mentally reconstruct the original information. This reconstruction is influenced by both the perspective geometry of the displayed image and the viewer's eye position relative to the display. In a study which manipulated these variables, subjects judged the azimuth direction of a target object relative to a reference object fixed in the center of a perspective display. The results support a previously developed model which predicted that the azimuth judgement error would be a sinusoidal function of stimulus azimuth. The amplitude of this function was correctly predicted to be systematically modulated by both the perspective geometry of the image and the viewer's eye position relative to the screen. Interaction of the two components of the model, the virtual space effect and the 3D-to-2D projection effect, predicted the relative amplitudes of the sinusoidal azimuth error functions for the various conditions of the experiment. Mean azimuth judgements in some directions differed by as much as 25 degrees as a result of different combinations of eye position and image geometry. The results illustrate the need to consider the effects of perspective geometry when designing spatial information instruments, and show the model to be a reliable predictor of average performance

    Non-Abelian statistics versus the Witten anomaly

    Full text link
    This paper is motivated by prospects for non-Abelian statistics of deconfined particle-like objects in 3+1 dimensions, realized as solitons with localized Majorana zeromodes. To this end, we study the fermionic collective coordinates of magnetic monopoles in 3+1 dimensional spontaneously-broken SU(2) gauge theories with various spectra of fermions. We argue that a single Majorana zeromode of the monopole is not compatible with cancellation of the Witten SU(2) anomaly. We also compare this approach with other attempts to realize deconfined non-Abelian objects in 3+1 dimensions.Comment: 11 pages, 3 figures; v2: added refs, minor corrections, published versio

    Gravity duals for non-relativistic CFTs

    Get PDF
    We attempt to generalize the AdS/CFT correspondence to non-relativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and compute some two-point correlators. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.Comment: 12 pages; v2, v3, v4: added references, minor corrections; v3: cleaned up and generalized dust; v4: closer to published versio

    Correlated metallic state in honeycomb lattice: Orthogonal Dirac semimetal

    Full text link
    A novel gapped metallic state coined orthogonal Dirac semimetal is proposed in the honeycomb lattice in terms of Z2Z_{2} slave-spin representation of Hubbard model. This state corresponds to the disordered phase of slave-spin and has the same thermaldynamical and transport properties as usual Dirac semimetal but its singe-particle excitation is gapped and has nontrivial topological order due to the Z2Z_{2} gauge structure. The quantum phase transition from this orthogonal Dirac semimetal to usual Dirac semimetal is described by a mean-field decoupling with complementary fluctuation analysis and its criticality falls into the universality class of 2+1D Ising model while a large anomalous dimension for the physical electron is found at quantum critical point (QCP), which could be considered as a fingerprint of our fractionalized theory when compared to other non-fractionalized approaches. As byproducts, a path integral formalism for the Z2Z_{2} slave-spin representation of Hubbard model is constructed and possible relations to other approaches and the sublattice pairing states, which has been argued to be a promising candidate for gapped spin liquid state found in the numerical simulation, are briefly discussed. Additionally, when spin-orbit coupling is considered, the instability of orthogonal Dirac semimetal to the fractionalized quantum spin Hall insulator (fractionalized topological insulator) is also expected. We hope the present work may be helpful for future studies in Z2Z_{2} slave-spin theory and related non-Fermi liquid phases in honeycomb lattice.Comment: 12 pages,no figures, more discussions added. arXiv admin note: text overlap with arXiv:1203.063

    Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition

    Full text link
    In a recent paper of Nandkishore and Senthil [arxiv:1201.5998 (2012)], a concept of orthogonal metal has been introduced to reinterpret the disordered state of slave-spin representation in the Hubbard model as an exotic gapped metallic state. We extend this concept to study the corresponding quantum phase transition in the extended Anderson lattice model. It is found that the disordered state of slave spins in this model is an orbital-selective orthogonal metal, a generalization of the concept of the orthogonal metal in the Hubbard model. Near the quantum critical point the essential behaviors are dominated by a z = 3 critical mode, which is in contrast to the naive expectation in the Hubbard model. The result provides alternative Kondo breakdown mechanism for heavy fermion compounds underlying the physics of the orbital-selective orthogonal metal in the disordered state, which is different from the conventional Kondo breakdown mechanism with the fractionalized Fermi liquid picture. This work is expected to be useful in understanding the quantum criticality happening in some heavy fermion materials and other related strongly correlated systems.Comment: 11 pages, no figures, significantly revised and reference added. Comparison with conventional Kondo breakdown mechanism is discussed in a new sectio
    • …
    corecore