45 research outputs found
Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens
Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens
B<i>rachypodium distachyon</i> exhibits compatible interactions with <i>Oculimacula </i>spp. and <i>Ramularia collo-cygni</i>, providing the first pathosystem model to study eyespot and ramularia leaf spot diseases
Brachypodium distachyon (Bd) has established itself as an essential tool for comparative genomic studies in cereals and increasing attention is being paid to its potential as a model pathosystem. Eyespot and ramularia leaf spot (RLS) are important diseases of wheat, barley and other small-grain cereals for which very little is known about the mechanisms of host resistance despite urgent requirements for plant breeders to develop resistant varieties. This work aimed to test the compatibility of interaction of two Bd accessions with the cereal pathogens Oculimacula spp. and Ramularia collocygni, the causal agents of eyespot and RLS diseases, respectively. Results showed that both Bd accessions developed symptoms similar to those on the natural host for all pathogen species tested. Microscopy images demonstrated that R. collo-cygni produced secondary conidia and both Oculimacula spp. formed characteristic infection structures on successive tissue layers. Visual disease assessment revealed that quantitative differences in disease severity exist between the two Bd accessions. The results presented here provide the first evidence that Bd is compatible with the main causal agents of eyespot and RLS diseases, and suggest that future functional genetic studies can be undertaken to investigate the mechanisms of eyespot and RLS disease resistance using Bd
Contribution of the drought tolerance-related stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot
NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS
Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace
Recessive mutations in the Mlo gene confer broad spectrum resistance in barley (Hordeum vulgare) to powdery mildew (Blumeria graminis f. sp. hordei), a widespread and damaging disease. However, all alleles discovered to date also display deleterious pleiotropic effects, including the naturally occurring mlo-11 mutant which is widely deployed in Europe. Recessive resistance was discovered in Eth295, an Ethiopian landrace, which was developmentally controlled and quantitative without spontaneous cell wall appositions or extensive necrosis and loss of photosynthetic tissue. This resistance is determined by two copies of the mlo-11 repeat units, that occur upstream to the wild-type Mlo gene, compared to 11-12 in commonly grown cultivars and was designated mlo-11 (cnv2). mlo-11 repeat unit copy number-dependent DNA methylation corresponded with cytological and macroscopic phenotypic differences between copy number variants. Sequence data indicated mlo-11 (cnv2) formed via recombination between progenitor mlo-11 repeat units and the 3' end of an adjacent stowaway MITE containing region. mlo-11 (cnv2) is the only example of a moderated mlo variant discovered to date and may have arisen by natural selection against the deleterious effects of the progenitor mlo-11 repeat unit configuration
The genome of the emerging barley pathogen Ramularia collo-cygni
Background
Ramularia collo-cygni is a newly important, foliar fungal pathogen of barley that causes the disease Ramularia leaf spot. The fungus exhibits a prolonged endophytic growth stage before switching life habit to become an aggressive, necrotrophic pathogen that causes significant losses to green leaf area and hence grain yield and quality.
Results
The R. collo-cygni genome was sequenced using a combination of Illumina and Roche 454 technologies. The draft assembly of 30.3 Mb contained 11,617 predicted gene models. Our phylogenomic analysis confirmed the classification of this ascomycete fungus within the family Mycosphaerellaceae, order Capnodiales of the class Dothideomycetes. A predicted secretome comprising 1053 proteins included redox-related enzymes and carbohydrate-modifying enzymes and proteases. The relative paucity of plant cell wall degrading enzyme genes may be associated with the stealth pathogenesis characteristic of plant pathogens from the Mycosphaerellaceae. A large number of genes associated with secondary metabolite production, including homologs of toxin biosynthesis genes found in other Dothideomycete plant pathogens, were identified.
Conclusions
The genome sequence of R. collo-cygni provides a framework for understanding the genetic basis of pathogenesis in this important emerging pathogen. The reduced complement of carbohydrate-degrading enzyme genes is likely to reflect a strategy to avoid detection by host defences during its prolonged asymptomatic growth. Of particular interest will be the analysis of R. collo-cygni gene expression during interactions with the host barley, to understand what triggers this fungus to switch from being a benign endophyte to an aggressive necrotroph
Compilation of a panel of informative single nucleotide polymorphisms for bovine identification in the Northern Irish cattle population
<p>Abstract</p> <p>Background</p> <p>Animal identification is pivotal in governmental agricultural policy, enabling the management of subsidy payments, movement of livestock, test scheduling and control of disease. Advances in bovine genomics have made it possible to utilise inherent genetic variability to uniquely identify individual animals by DNA profiling, much as has been achieved with humans over the past 20 years. A DNA profiling test based on bi-allelic single nucleotide polymorphism (SNP) markers would offer considerable advantages over current short tandem repeat (STR) based industry standard tests, in that it would be easier to analyse and interpret. In this study, a panel of 51 genome-wide SNPs were genotyped across panels of semen DNA from 6 common breeds for the purposes of ascertaining allelic frequency. For SNPs on the same chromosome, the extent of linkage disequilbrium was determined from genotype data by Expectation Maximization (EM) algorithm. Minimum probabilities of unique identification were determined for each breed panel. The usefulness of this SNP panel was ascertained by comparison to the current bovine STR Stockmarks II assay. A statistically representative random sampling of bovine animals from across Northern Ireland was assembled for the purposes of determining the population allele frequency for these STR loci and subsequently, the minimal probability of unique identification they conferred in sampled bovine animals from Northern Ireland.</p> <p>Results</p> <p>6 SNPs exhibiting a minor allele frequency of less than 0.2 in more than 3 of the breed panels were excluded. 2 Further SNPs were found to reside in coding areas of the cattle genome and were excluded from the final panel. The remaining 43 SNPs exhibited genotype frequencies which were in Hardy Weinberg Equilibrium. SNPs on the same chromosome were observed to have no significant linkage disequilibrium/allelic association. Minimal probabilities of uniquely identifying individual animals from each of the breeds were obtained and were observed to be superior to those conferred by the industry standard STR assay.</p> <p>Conclusions</p> <p>The 43 SNPs characterised herein may constitute a starting point for the development of a SNP based DNA identification test for European cattle.</p
Using screen video capture software to aide and inform cognitive interviewing
Web-based surveys are a salient tool in the repertoire of social and behavioral scientists. The increase in web-based surveys is understandable considering the distinct advantages offered, including: (a) lower costs and reduced labor time, (b) ability to directly transfer data into statistical packages (reducing coding errors), (c) customization options enabling more attractive presentation, (d) ability to reduce respondent burden by embedding skip patterns, and (e) access to larger sample sizes in different geographic regions. It is important to note, however, that administering web-based surveys also introduces distinct sources of error (e.g., coverage, sampling and non-response). Regardless of format (e.g., paper-and-pencil or web-based), specific, prescribed steps must be followed when constructing an instrument in order to reduce survey error and lend credence to the data collected before subsequent analysis is performed. One of those crucial stages integral to the pretesting process is cognitive interviewing. Cognitive interviewing is a qualitative process, encompassing two main techniques: think aloud interviewing and verbal probing. Collectively, these two methods seek to (a) produce information on what the respondent is thinking while answering the questions, (b) the cognitive processes used to answer the questions, and (c) how the respondent answers the questions. The purpose of this article is to provide a practical guide outlining how Camtasia, a screen video capture software, can aide and inform the cognitive interview process
Interim Consequence Management Guidance for a Wide-Area Biological Attack
Abstract not provide