4,450 research outputs found

    Leading-edge slat optimization for maximum airfoil lift

    Get PDF
    A numerical procedure for determining the position (horizontal location, vertical location, and deflection) of a leading edge slat that maximizes the lift of multielement airfoils is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This aerodynamic calculation is combined with a constrained function minimization analysis to determine the position of a leading edge slat so that the suction peak on the nose of the main airfoil is minized. The slat position is constrained by the numerical procedure to ensure an attached boundary layer on the upper surface of the slat and to ensure negligible interaction between the slat wake and the boundary layer on the upper surface of the main airfoil. The highest angle attack at which this optimized slat position can maintain attached flow on the main airfoil defines the optimum slat position for maximum lift. The design method is demonstrated for an airfoil equipped with a leading-edge slat and a trailing edge, single-slotted flap. The theoretical results are compared with experimental data, obtained in the Ames 40 by 80 Foot Wind Tunnel, to verify experimentally the predicted slat position for maximum lift. The experimentally optimized slat position is in good agreement with the theoretical prediction, indicating that the theoretical procedure is a feasible design method

    An EPIIC Vision to Evolve Project Integration, Innovation, and Collaboration with Broad Impact for How NASA Executes Complex Projects

    Get PDF
    Evolving Project Integration, Innovation, and Collaboration (EPIIC) is a vision defined to transform the way projects manage information to support real-time decisions, capture best practices and lessons learned, perform assessments, and manage risk across a portfolio of projects. The foundational project management needs for data and information will be revolutionized through innovations on how we manage and access that data, implement configuration control, and certify compliance. The embedded intelligence of new interactive data interfaces integrate technical and programmatic data such that near real time analytics can be accomplished to more efficiently and accurately complete systems engineering and project management tasks. The system-wide data analytics that are integrated into customized data interfaces allows the growing team of engineers and managers required to develop and implement major NASA missions the ability to access authoritative source(s) of system information while greatly reducing the labor required to complete system assessments. This would allow, for example, much of what is accomplished in a scheduled design review to take place as needed, between any team members, at any time. An intelligent data interface that rigorously integrates systems engineering and project management information in near real time can provide substantially greater insight for systems engineers, project managers, and the large diverse teams required to complete a complex project. System engineers, programmatic personnel (those who focus on cost, schedule, and risk), the technical engineering disciplines, and project management can realize immediate benefit from the shared vision described herein. Implementation of the vision also enables significant improvements in the performance of the engineered system being developed

    Applying economic principles to health care.

    Get PDF
    Applying economic thinking to an understanding of resource use in patient care is challenging given the complexities of delivering health care in a hospital. Health-care markets lack the characteristics needed to determine a "market" price that reflects the economic value of resources used. However, resource allocation in a hospital can be analyzed by using production theory to determine efficient resource use. The information provided by hospital epidemiologists is critical to understanding health-care production processes used by a hospital and developing economic incentives to promote antibiotic effectiveness and infection control

    Weak Disorder in Fibonacci Sequences

    Full text link
    We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1-epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent, that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling, and copying are considered.Comment: 4 pages, 2 figure

    Studies of oxidative stress in cellular systems The interaction of monocytes and erythrocytes

    Get PDF
    Abstract1H spin echo NMR spectroscopy is used to follow the interaction of intact and viable erythrocytes and monocytes obtained from different sources in mixed cultures. After a lag time (270 min) erythrocyte glutathione is observed to become more oxidised. This result is believed to occur as a consequence of monocyte activation generating hydrogen peroxide or hypochlorous acid, which is targeted at the erythrocyte. The red cell in turn employs its sulphydryl system as an anti-oxidant defence

    Atom lithography using MRI-type feature placement

    Get PDF
    We demonstrate the use of frequency-encoded light masks in neutral atom lithography. We demonstrate that multiple features can be patterned across a monotonic potential gradient. Features as narrow as 0.9 microns are fabricated on silicon substrates with a metastable argon beam. Internal state manipulation with such a mask enables continuously adjustable feature positions and feature densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure

    Probing the Pulsar Wind Nebula of PSR B0355+54

    Get PDF
    We present XMM-Newton and Chandra X-ray observations of the middle-aged radio pulsar PSR B0355+54. Our X-ray observations reveal emission not only from the pulsar itself, but also from a compact diffuse component extending ~50'' in the opposite direction to the pulsar's proper motion. There is also evidence for the presence of fainter diffuse emission extending ~5' from the point source. The compact diffuse feature is well-fitted with a power-law, the index of which is consistent with the values found for other pulsar wind nebulae. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. The X-ray emission from the pulsar itself is described well by a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.Comment: 9 pages (uses emulateapj.cls), 8 figures, 2 tables, accepted for publication in Ap
    • …
    corecore