379 research outputs found

    Recent advances in the use of metformin: Can treating diabetes prevent breast cancer?

    Full text link
    © 2015 Diana Hatoum and Eileen M. McGowan. There is substantial epidemiological evidence pointing to an increased incidence of breast cancer and morbidity in obese, prediabetic, and diabetic patients. In vitro studies strongly support metformin, a diabetic medication, in breast cancer therapy. Although metformin has been heralded as an exciting new breast cancer treatment, the principal consideration is whether metformin can be used as a generic treatment for all breast cancer types. Importantly, will metformin be useful as an inexpensive therapy for patients with comorbidity of diabetes and breast cancer? In general, meta-analyses of clinical trial data from retrospective studies in which metformin treatment has been used for patients with diabetes and breast cancer have a positive trend; nevertheless, the supporting clinical data outcomes remain inconclusive. The heterogeneity of breast cancer, confounded by comorbidity of disease in the elderly population, makes it difficult to determine the actual benefits of metformin therapy. Despite the questionable evidence available from observational clinical studies and meta-analyses, randomized phases I-III clinical trials are ongoing to test the efficacy of metformin for breast cancer. This special issue review will focus on recent research, highlighting in vitro research and retrospective observational clinical studies and current clinical trials on metformin action in breast cancer

    Switching the sphingolipid rheostat in the treatment of diabetes and cancer comorbidity from a problem to an advantage

    Get PDF
    © 2015 Nikolas K. Haass et al. Cancer and diabetes are among the most common diseases in western societies. Epidemiological studies have shown that diabetic patients have a significantly higher risk of developing a number of different types of cancers and that individuals with comorbidity (cancer and diabetes/prediabetes) have a poorer prognosis relative to nondiabetic cancer patients. The increasing frequency of comorbidity of cancer and diabetes mellitus, mainly type 2 diabetes, has driven the development of therapeutic interventions that target both disease states. There is strong evidence to suggest that balancing the sphingolipid rheostat, ceramide - sphingosine - sphingosine-1-phosphate (S1P) is crucial in the prevention of diabetes and cancer and sphingosine kinase/S1P modulators are currently under development for the treatment of cancer and diabetes. This paper will highlight some of the complexities inherent in the use of the emerging sphingosine kinase/S1P modulators in the treatment of comorbidity of diabetes and cancer

    Good guy or bad guy? The duality of wild-type p53 in hormone-dependent breast cancer origin, treatment, and recurrence

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. “Lactation is at one point perilously near becoming a cancerous process if it is at all arrested”, Beatson, 1896. Most breast cancers arise from the milk-producing cells that are characterized by aberrant cellular, molecular, and epigenetic translation. By understanding the underlying molecular disruptions leading to the origin of cancer, we might be able to design novel strategies for more efficacious treatments or, ambitiously, divert the cancerous process. It is an established reality that full-term pregnancy in a young woman provides a lifetime reduction in breast cancer risk, whereas delay in full-term pregnancy increases short-term breast cancer risk and the probability of latent breast cancer development. Hormonal activation of the p53 protein (encode by the TP53 gene) in the mammary gland at a critical time in pregnancy has been identified as one of the most important determinants of whether the mammary gland develops latent breast cancer. This review discusses what is known about the protective influence of female hormones in young parous women, with a specific focus on the opportune role of wild-type p53 reprogramming in mammary cell differentiation. The importance of p53 as a protector or perpetrator in hormone-dependent breast cancer, resistance to treatment, and recurrence is also explored

    Assessment of anti-TNF-α activities in keratinocytes expressing inducible TNF- α: A novel tool for anti-TNF-α drug screening

    Full text link
    © 2016 Udommethaporn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine important in normal and pathological biological processes. Newly synthesized pro-TNF-α is expressed on the plasma membrane and cleaved to release soluble TNF-α protein: both are biologically active. Secreted TNF-α signals through TNF receptors and the membrane-bound TNF-α acts by cell contact-dependent signaling. Anti-TNF-α antibodies have been used effectively for treatment of chronic inflammation, however with adverse side effects. Thus, there is a need for new anti-TNF-α small molecule compounds. Anti-TNF-α activity assays involve treatment of keratinocytes with exogenous TNF-α before or after anti-TNF-α incubation. However, this model fails to address the dual signaling of TNF-α. Here we describe a Doxycycline (Dox)-inducible TNF-α (HaCaT-TNF-α) expression system in keratinocytes. Using this in-vitro model, we show cell inhibition and induced expression of pro-inflammatory cytokines and markers, including IL-1β, IL-6, IL-8, NF-êB1, and KRT-16, similar to cells treated with exogenous TNF-α. Sufficient secreted TNF-α produced also activated IL-1β and IL-8 expression in wt HaCaT cells. Importantly, stimulated expression of IL-1β and IL-8 in HaCaT-TNF-α were blocked by Quercetin, a flavanol shown to possess anti-TNF-α activities. This novel in vitro cell model provides an efficient tool to investigate the dual signaling of TNF-α. Importantly, this model provides an effective, fast, and simple screening for compounds with anti-TNF-α activities for chronic inflammatory disease therapies

    Annexin/S100A protein family regulation through p14ARF-p53 activation: A role in cell survival and predicting treatment outcomes in breast cancer

    Full text link
    © 2017 Hatoum et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The annexin family and S100A associated proteins are important regulators of diverse calcium- dependent cellular processes including cell division, growth regulation and apoptosis. Dysfunction of individual annexin and S100A proteins is associated with cancer progression, metastasis and cancer drug resistance. This manuscript describes the novel finding of differential regulation of the annexin and S100A family of proteins by activation of p53 in breast cancer cells. Additionally, the observed differential regulation is found to be beneficial to the survival of breast cancer cells and to influence treatment efficacy. We have used unbiased, quantitative proteomics to determine the proteomic changes occurring post p14ARF-p53 activation in estrogen receptor (ER) breast cancer cells. In this report we identified differential regulation of the annexin/S100A family, through unique peptide recognition at the N-terminal regions, demonstrating p14ARF-p53 is a central orchestrator of the annexin/S100A family of calcium regulators in favor of pro-survival functions in the breast cancer cell. This regulation was found to be cell-type specific. Retrospective human breast cancer studies have demonstrated that tumors with functional wild type p53 (p53wt) respond poorly to some chemotherapy agents compared to tumors with a non-functional p53. Given that modulation of calcium signaling has been demonstrated to change sensitivity of chemotherapeutic agents to apoptotic signals, in principle, we explored the paradigm of how p53 modulation of calcium regulators in ER+ breast cancer patients impacts and influences therapeutic outcomes

    Triple SILAC identified progestin-independent and dependent PRA and PRB interacting partners in breast cancer

    Full text link
    Progesterone receptor (PR) isoforms, PRA and PRB, act in a progesterone-independent and dependent manner to differentially modulate the biology of breast cancer cells. Here we show that the differences in PRA and PRB structure facilitate the binding of common and distinct protein interacting partners affecting the downstream signaling events of each PR-isoform. Tet-inducible HA-tagged PRA or HA-tagged PRB constructs were expressed in T47DC42 (PR/ER negative) breast cancer cells. Affinity purification coupled with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry technique was performed to comprehensively study PRA and PRB interacting partners in both unliganded and liganded conditions. To validate our findings, we applied both forward and reverse SILAC conditions to effectively minimize experimental errors. These datasets will be useful in investigating PRA- and PRB-specific molecular mechanisms and as a database for subsequent experiments to identify novel PRA and PRB interacting proteins that differentially mediated different biological functions in breast cancer

    Differential hepatic features presenting in Wilson disease-associated cirrhosis and hepatitis B-associated cirrhosis

    Full text link
    © The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved. BACKGROUND Cirrhosis is a chronic late stage liver disease associated with hepatitis viruses, alcoholism, and metabolic disorders, such as Wilson disease (WD). There are no clear markers or clinical features that define cirrhosis originating from these disparate origins. We hypothesized that cirrhosis is not one disease and cirrhosis of different etiology may have differential clinical hepatic features. AIM To delineate the liver features between WD-associated cirrhosis and hepatitis Bassociated cirrhosis in the Chinese population. METHODS In this observational study, we reviewed the medical data of consecutive inpatients who had WD-associated cirrhosis or hepatitis B-associated cirrhosis from January 2010 to August 2018, and excluded patients who had carcinoma, severe heart or pulmonary diseases, or other liver diseases. According to the etiology of cirrhosis, patients were divided into two groups: WD-associated cirrhosis group (60 patients) and hepatitis B-associated cirrhosis group (56 patients). The liver fibrosis degree, liver function indices, and portal hypertension features of these patients were compared between the two groups. RESULTS No inter-group differences were observed in the diagnostic liver fibrosis markers, however, clinical features clearly defined the origin of cirrhosis. WD-associated cirrhosis patients (16-29 years) had lower levels of alanine transaminase, aspartate transaminase, and bilirubin, lower prothrombin time, lower incidence of hepatic encephalopathy, and lower portal vein diameter (P < 0.05), compared to cirrhosis resulting from hepatitis B in older patients (45-62 years). Importantly, they had decreased risks of progression from Child-Pugh grade A to B (odds ratio = 0.046, 95% confidence interval: 0.006-0.387, P = 0.005) and of ascites (odds ratio = 0.08, 95% confidence interval: 0.01-0.48, P = 0.005). Conversely, WDassociated cirrhosis patients had a higher risk of splenomegaly (odds ratio = 4.15, 95% confidence interval: 1.38-12.45, P = 0.011). CONCLUSION WD-associated cirrhosis presents a higher risk of splenomegaly associated with leukopenia and thrombocytopenia, although revealing milder liver dysfunction and portal hypertension symptoms, which recommends WD patients to be monitored for associated complications

    “Dicing and splicing” sphingosine kinase and relevance to cancer

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics

    Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget.

    Full text link
    The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget
    corecore