1,723 research outputs found

    Bringing Scotland’s wilderness ‘within the reach of the people’: William Eagle Clarke (1853-1938) and representations of place

    Get PDF
    William Eagle Clarke was on the staff of the Royal Scottish Museum, Edinburgh, (now incorporated into National Museums Scotland) from 1888 to 1921. This poster presents two related aspects of his construct of representations of Scotland’s landscape

    Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    Get PDF
    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems

    Position Paper: Designing Complex Systems to Support Interdisciplinary Cognitive Work

    Get PDF
    The paper argues that the field we can call cognitive science of interdisciplinary collaboration is an important area of study for improving design of Large-Scale Complex Systems (LaCES) and supporting cognitive work. The paper mostly raised questions that have been documented in earlier qualitative analysis studies, and provided possible avenues of exploration for addressing them. There are likely further contributions from additional disciplines beyond those mentioned in this paper that should be considered and integrated into such a cognitive science framework. Knowledge and awareness of various perspectives will help to inform the types of interventions available for improving LaCES design and functionality. For example, a cognitive interpretation of interdisciplinary collaborations in LaCES elucidated the need for a "translator" or "mediator" in helping subject matter experts to transcend language boundaries, mitigate single discipline bias, support integrative activities, and correct misaligned objectives. Additional research in this direction is likely to uncover similar gaps and opportunities for improvements in practice

    Retinal microvascular network attenuation in Alzheimer's disease

    Get PDF
    AbstractIntroductionCerebral small-vessel disease has been implicated in the development of Alzheimer's disease (AD). The retinal microvasculature enables the noninvasive visualization and evaluation of the systemic microcirculation. We evaluated retinal microvascular parameters in a case-control study of AD patients and cognitively normal controls.MethodsRetinal images were computationally analyzed and quantitative retinal parameters (caliber, fractal dimension, tortuosity, and bifurcation) measured. Regression models were used to compute odds ratios (OR) and confidence intervals (CI) for AD with adjustment for confounders.ResultsRetinal images were available in 213 AD participants and 294 cognitively normal controls. Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77 [CI: 0.62–0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63–0.97]) were more likely to have AD after appropriate adjustment.DiscussionPatients with AD have a sparser retinal microvascular network and retinal microvascular variation may represent similar pathophysiological events within the cerebral microvasculature of patients with AD

    Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.

    Get PDF
    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated

    Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment

    Full text link
    We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. AA-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training.Comment: 41 page

    Managing Renal Cell Carcinoma Associated Paraneoplastic Syndrome with Nephron-sparing Surgery in a Patient with von Hippel-Lindau.

    Get PDF
    A patient with germline von Hippel-Lindau (VHL) gene alteration and history of multiple tumors present with classical paraneoplastic syndrome (PNS) associated with renal cell carcinoma (RCC). She underwent open nephron sparing surgery with resolution of symptoms. She remained without recurrence of RCC for the initial 2 years of her follow-up. To the best of our knowledge, this case represents the first in which PNS was specifically resolved using a partial nephrectomy in a patient with VHL. This case report provides initial evidence for the potential role of nephron sparing surgery in the management of paraneoplastic symptoms associated with hereditary RCC

    Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice

    Get PDF
    Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1(JRCSF) and 0% (0/6; log rank p = 0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides
    • …
    corecore