25 research outputs found

    A FRET-Based High Throughput Screening Assay to Identify Inhibitors of Anthrax Protective Antigen Binding to Capillary Morphogenesis Gene 2 Protein

    Get PDF
    Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA), a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2) protein and tumor endothelial marker 8 (TEM8). Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET) high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein–protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Medically complex pregnancies and early breastfeeding behaviors: a retrospective analysis.

    No full text
    Breastfeeding is beneficial for women and infants, and medical contraindications are rare. Prenatal and labor-related complications may hinder breastfeeding, but supportive hospital practices may encourage women who intend to breastfeed. We measured the relationship between having a complex pregnancy (entering pregnancy with hypertension, diabetes, or obesity) and early infant feeding, accounting for breastfeeding intentions and supportive hospital practices.We performed a retrospective analysis of data from a nationally-representative survey of women who gave birth in 2011-2012 in a US hospital (N = 2400). We used logistic regression to examine the relationship between pregnancy complexity and breastfeeding. Self-reported prepregnancy diabetes or hypertension, gestational diabetes, or obesity indicated a complex pregnancy. The outcome was feeding status 1 week postpartum; any breastfeeding was evaluated among women intending to breastfeed (N = 1990), and exclusive breastfeeding among women who intended to exclusively breastfeed (N = 1418). We also tested whether breastfeeding intentions or supportive hospital practices mediated the relationship between pregnancy complexity and infant feeding status.More than 33% of women had a complex pregnancy; these women had 30% lower odds of intending to breastfeed (AOR = 0.71; 95% CI, 0.52-0.98). Rates of intention to exclusively breastfeed were similar for women with and without complex pregnancies. Women who intended to breastfeed had similar rates of any breastfeeding 1 week postpartum regardless of pregnancy complexity, but complexity was associated with >30% lower odds of exclusive breastfeeding 1 week among women who intended to exclusively breastfeed (AOR = 0.68; 95% CI, 0.47-0.98). Supportive hospital practices were strongly associated with higher odds of any or exclusive breastfeeding 1 week postpartum (AOR = 4.03; 95% CI, 1.81-8.94; and AOR = 2.68; 95% CI, 1.70-4.23, respectively).Improving clinical and hospital support for women with complex pregnancies may increase breastfeeding rates and the benefits of breastfeeding for women and infants

    Percentage of Women in the Study Population (N = 2400) With Specific Breastfeeding Behaviors, as Well as Intentions and Hospital Support, by Pregnancy Complexity.

    No full text
    <p>Note: Percentages are weighted to be nationally representative. Bold values indicate statistically significant difference (<i>P</i>≤.05). <i>P</i> values are based on Pearson's χ<sup>2</sup> tests.</p

    Percentage of Women in the Study Sample (N = 2400), With a Specific Characteristic, by Pregnancy Complexity.

    No full text
    <p>Note: Percentages are weighted to be nationally representative. Bold values indicate statistically significant difference (<i>P</i>≤.05). <i>P</i> values are based on Pearson's χ<sup>2</sup> tests.</p

    Controlled Odds of Breastfeeding Intentions by Pregnancy Complexity (N = 2400).

    No full text
    <p>Note: Models are weighted to be nationally representative. Models control for age, race/ethnicity, education, census region, nativity, partnership status, parity, unintended pregnancy, birth attitudes, and health insurance status. Bold text indicates statistically significant (<i>P</i>≤.05).</p
    corecore