4 research outputs found

    Quantitative genetic versions of Hamilton's rule with empirical applications

    Get PDF
    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution

    Reinterpreting Bateman Gradients: Multiple Mating and Selection in Both Sexes of a Songbird Species

    No full text
    Bateman’s principle, which states that male reproductive success should increase with multiple mating, whereas female reproductive success should not, has long been used to explain sex differences in behavior. The statistical relationship between mating success and reproductive success, or Bateman gradient, has been proposed as a way to quantify sex differences in sexual selection. We used a long-term data set on the distribution of paternity in the socially monogamous dark-eyed junco to examine the effect of multiple mating on lifetime reproductive success and to determine the relative contributions of within-pair and extra-pair mating. Both sexes exhibited a strong positive Bateman gradient, even when the number of breeding years was accounted for. Although theory suggests that this pattern indicates a strong potential for sexual selection in both sexes, we argue that the interpretation of strong Bateman gradients, particularly in females, has many potential complications. We discuss several alternative explanations for our results, none of which requires sexual selection acting on female traits, including targeting of inherently fecund females by males seeking extra-pair mates and increased power to detect extra-pair offspring as family size increases. Because neither of these explanations requires that increased mating success causes increased reproductive success, we conclude that using Bateman gradients to measure the potential for sexual selection may be misleading for some mating systems and life histories, such as the iteroparous social monogamy found in juncos

    Hormones and Honest Signals: Males with Larger Ornaments Elevate Testosterone More When Challenged

    No full text
    When male investment in mating varies with quality, reliable sexual signals may evolve. In many songbirds, testosterone mediates mating investment, suggesting that signals should be linked to testosterone production. However, because testosterone may change rapidly during behaviour such as territorial aggression and courtship, efforts to establish such a relationship have proved challenging. In a population of dark-eyed juncos, we measured individual variation in the production of short-term testosterone increases by injecting gonadotropin-releasing hormone (GnRH). We found a positive correlation between the magnitude of these increases and the size of a plumage ornament (\u27tail white\u27) previously shown to be important for female choice and male-male competition. We then measured naturally elevated testosterone levels produced during male-male competition and found that they covaried with those induced by GnRH. We suggest that the association between tail white and testosterone increases may allow conspecifics to assess potential mates and competitors reliably using tail white

    Historical Contingency in a Multigene Family Facilitates Adaptive Evolution of Toxin Resistance.

    No full text
    Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards ∼170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning ∼38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family.Animal science
    corecore