46 research outputs found

    Military Children’s Difficulty with Reintegration after Deployment: A Relational Turbulence Model Perspective

    Get PDF
    This study drew on the relational turbulence model to investigate how the interpersonal dynamics of military couples predict parents’ reports of the reintegration difficulty of military children upon homecoming after deployment. Longitudinal data were collected from 118 military couples once per month for 3 consecutive months after reunion. Military couples reported on their depressive symptoms, characteristics of their romantic relationship, and the reintegration difficulty of their oldest child. Results of dyadic growth curve models indicated that the mean levels of parents’ depressive symptoms (H1), relationship uncertainty (H2), and interference from a partner (H3) were positively associated with parents’ reports of military children’s reintegration difficulty. These findings suggest that the relational turbulence model has utility for illuminating the reintegration difficulty of military children during the postdeployment transition

    An Evaluation of the University of Illinois Extension Get Up & Move! Program

    Get PDF
    Get Up & Move! is a program created by University of Illinois Extension to address childhood obesity. It provides ready-to-use materials for youth leaders to promote healthy lifestyles through physical fitness and healthy eating. The impact of the program on participants’ physical activity was evaluated to see whether involvement produces an increase in physical activity to the USDA recommended 60 minutes per day. It was found that a significant increase in minutes of physical activity occurred in participants from an average of 51.88 minutes per day to an average of 58.84 minutes per day

    Sterile Neutrinos in E_6 and a Natural Understanding of Vacuum Oscillation Solution to the Solar Neutrino Puzzle

    Get PDF
    If Nature has chosen the vacuum oscillation solution to the Solar neutrino puzzle, a key theoretical challenge is to understand the extreme smallness of the Δmνe−νX2\Delta m^2_{\nu_e-\nu_X} (∼10−10eV2\sim 10^{-10} eV^2) required for the purpose. We find that in a class of models such as [SU(3)]^3 or its parent group E_6, which contain one sterile neutrino, νis\nu_{is} for each family, the Δmνi−νis2\Delta m^2_{\nu_i-\nu_{is}} is proportional to the cube of the lepton Yukawa coupling. Therefore fitting the atmospheric neutrino data then predicts the νe−νes\nu_e-\nu_{es} mass difference square to be ∼(memμ)3Δmatmos2\sim (\frac{m_e}{m_{\mu}})^3 \Delta m^2_{atmos}, where the atmospheric neutrino data is assumed to be solved via the νμ−νμs\nu_{\mu}-\nu_{\mu s} oscillation. This provides a natural explanation of the vacuum oscillation solution to the solar neutrino problem.Comment: 7 pages, UMD-PP-99-109; new references added; no other chang

    Connecting bimaximal neutrino mixing to a light sterile neutrino

    Get PDF
    It is shown that if small neutrino masses owe their origin to the conventional seesaw mechanism and the MNS mixing matrix is in the exact bimaximal form, then there exist symmetries in the theory that allow one of the righthanded neutrinos to become naturally massless, making it a candidate for the sterile neutrino discussed in the literature. Departures from the exact bimaximal limit leads to tiny mass for the sterile neutrino as well as its mixing to the active neutrinos. This provides a minimal theoretical framework where a simultaneous explanation of the solar, atmospheric and LSND observations within the so-called 3+1 scenario may be possible.Comment: new references added; paper accepted for publication in Phys. Rev. D.(rapid communications); note adde

    Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems

    Get PDF
    Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii
    corecore