139 research outputs found

    Scottish input-output tables for 1979

    Get PDF
    Scotland, for the year 1973, were published in 1978, as a result of a collaborative effort between the Fraser of Allander Institute, the IBM Scientific Centre and the Scottish Council Research Institute. A second set of tables, for the year 1979, have been compiled by the Industry Department for Scotland (IDS) and the results have recently been published in a series of four special volumes. The compilation of input-output tables is a complex exercise which involves a substantial commitment of resources and time, which explains the long interval (nearly five years) between the base year of the tables and the publication of the results. The tables however reveal a great deal about the structure of the economy and have a wide range of applications. The next section of this paper explains what input-output tables are, while the following section summarises the main features of the Scottish tables for 1979. The last part of the paper outlines some applications of input-output models, and gives some examples of applications in the Scottish context

    Review of the quarter's economic trends [October 1981]

    Get PDF
    In the second quarter of 1981 the index of industrial production for the United Kingdom was 8% below its level for the corresponding period in 1980. This notwithstanding, there do appear to be signs that the bottom of the output trough may now have been reached. This brief section will seek to understand the latest UK and world economic data to determine current economic conditions and forecasts future trends

    In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells

    Get PDF
    Much effort has been made to try to understand the relationship between chemotherapeutic treatment of cancer and the immune system. Whereas much of that focus has been on the direct effect of chemotherapy drugs on immune cells and the release of antigens and danger signals by malignant cells killed by chemotherapy, the effect of chemotherapy on cells surviving treatment has often been overlooked. In the present study, tumour cell lines: A549 (lung), HCT116 (colon) and MCF-7 (breast), were treated with various concentrations of the chemotherapeutic drugs cyclophosphamide, gemcitabine (GEM) and oxaliplatin (OXP) for 24 hours in vitro. In line with other reports, GEM and OXP upregulated expression of the death receptor CD95 (fas) on live cells even at sub-cytotoxic concentrations. Further investigation revealed that the increase in CD95 in response to GEM sensitised the cells to fas ligand treatment, was associated with increased phosphorylation of stress activated protein kinase/c-Jun N-terminal kinase and that other death receptors and activatory immune receptors were co-ordinately upregulated with CD95 in certain cell lines. The upregulation of death receptors and NKG2D ligands together on cells after chemotherapy suggest that although the cells have survived preliminary treatment with chemotherapy they may now be more susceptible to immune cell-mediated challenge. This re-enforces the idea that chemotherapy-immunotherapy combinations may be useful clinically and has implications for the make-up and scheduling of such treatments

    Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: A single-center prospective longitudinal study

    Get PDF
    Background: Immunothrombosis and coagulopathy in the lung microvasculature may lead to lung injury and disease progression in coronavirus disease 2019 (COVID-19). We aim to identify biomarkers of coagulation, endothelial function, and fibrinolysis that are associated with disease severity and may have prognostic potential. Methods: We performed a single-center prospective study of 14 adult COVID-19(+) intensive care unit patients who were age- and sex-matched to 14 COVID-19(−) intensive care unit patients, and healthy controls. Daily blood draws, clinical data, and patient characteristics were collected. Baseline values for 10 biomarkers of interest were compared between the three groups, and visualized using Fisher\u27s linear discriminant function. Linear repeated-measures mixed models were used to screen biomarkers for associations with mortality. Selected biomarkers were further explored and entered into an unsupervised longitudinal clustering machine learning algorithm to identify trends and targets that may be used for future predictive modelling efforts. Results: Elevated D-dimer was the strongest contributor in distinguishing COVID-19 status; however, D-dimer was not associated with survival. Variable selection identified clot lysis time, and antigen levels of soluble thrombomodulin (sTM), plasminogen activator inhibitor-1 (PAI-1), and plasminogen as biomarkers associated with death. Longitudinal multivariate k-means clustering on these biomarkers alone identified two clusters of COVID-19(+) patients: low (30%) and high (100%) mortality groups. Biomarker trajectories that characterized the high mortality cluster were higher clot lysis times (inhibited fibrinolysis), higher sTM and PAI-1 levels, and lower plasminogen levels. Conclusions: Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19

    Adaptor SKAP-55 Binds p21ras Activating Exchange Factor RasGRP1 and Negatively Regulates the p21ras-ERK Pathway in T-Cells

    Get PDF
    While the adaptor SKAP-55 mediates LFA-1 adhesion on T-cells, it is not known whether the adaptor regulates other aspects of signaling. SKAP-55 could potentially act as a node to coordinate the modulation of adhesion with downstream signaling. In this regard, the GTPase p21ras and the extracellular signal-regulated kinase (ERK) pathway play central roles in T-cell function. In this study, we report that SKAP-55 has opposing effects on adhesion and the activation of the p21ras -ERK pathway in T-cells. SKAP-55 deficient primary T-cells showed a defect in LFA-1 adhesion concurrent with the hyper-activation of the ERK pathway relative to wild-type cells. RNAi knock down (KD) of SKAP-55 in T-cell lines also showed an increase in p21ras activation, while over-expression of SKAP-55 inhibited activation of ERK and its transcriptional target ELK. Three observations implicated the p21ras activating exchange factor RasGRP1 in the process. Firstly, SKAP-55 bound to RasGRP1 via its C-terminus, while secondly, the loss of binding abrogated SKAP-55 inhibition of ERK and ELK activation. Thirdly, SKAP-55−/− primary T-cells showed an increased presence of RasGRP1 in the trans-Golgi network (TGN) following TCR activation, the site where p21ras becomes activated. Our findings indicate that SKAP-55 has a dual role in regulating p21ras-ERK pathway via RasGRP1, as a possible mechanism to restrict activation during T-cell adhesion

    Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood Transfusion in Severe Malarial Anemia

    Get PDF
    Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM). Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9), p<0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05). Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development

    A Role for Fetal Hemoglobin and Maternal Immune IgG in Infant Resistance to Plasmodium falciparum Malaria

    Get PDF
    In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs--cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood

    Regulation of immune cell function and differentiation by the NKG2D receptor

    Get PDF
    NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation

    Ovarian cancer molecular pathology.

    Full text link
    Peer reviewe
    corecore