1,975 research outputs found

    An Exploratory Investigation of the Effects of a Thin Plastic Film Cover on the Profile Drag of an Aircraft Wing Panel

    Get PDF
    Exploratory wind tunnel tests were conducted on a large chord aircraft wing panel to evaluate the potential for drag reduction resulting from the application of a thin plastic film cover. The tests were conducted at a Mach number of 0.15 over a Reynolds number range from about 7 x 10 to the 6th power to 63 x 10 to the 6th power

    Wind-tunnel results for an improved 21-percent-thick low-speed airfoil section

    Get PDF
    Low speed wind tunnel tests were conducted to evaluate the effects on performance of modifying a 23 percent thick low speed airfoil. The airfoil contour was altered to reduce the upper-surface adverse pressure gradient and hence reduce boundary layer separation. The chord Reynolds number varied from about 2,000,000 to 9,000,000

    Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications

    Get PDF
    Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000

    Wind tunnel testing of low-drag airfoils

    Get PDF
    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils

    NASA low- and medium-speed airfoil development

    Get PDF
    The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized

    Experimental Results for a Flapped Natural-laminar-flow Airfoil with High Lift/drag Ratio

    Get PDF
    Experimental results have been obtained for a flapped natural-laminar-flow airfoil, NLF(1)-0414F, in the Langley Low-Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.05 to 0.40 and a chord Reynolds number range from about 3.0 x 10(6) to 22.0 x 10(6). The airfoil was designed for 0.70 chord laminar flow on both surfaces at a lift coefficient of 0.40, a Reynolds number of 10.0 x 10(6), and a Mach number of 0.40. A 0.125 chord simple flap was incorporated in the design to increase the low-drag, lift-coefficient range. Results were also obtained for a 0.20 chord split-flap deflected 60 deg

    Fuel conservative guidance concept for shipboard landing of powered-life aircraft

    Get PDF
    A simulation study was undertaken to investigate the application of energy conservative guidance (ECG) software, developed at NASA Ames Research Center, to improve the time and fuel efficiency of powered lift airplanes operating from aircraft carriers at sea. When a flightpath is indicated by a set of initial conditions for the aircraft and a set of positional waypoints with associated airspeeds, the ECG software synthesizes the necessary guidance commands to optimize fuel and time along the specified path. A major feature of the ECG system is the ability to synthesize a trajectory that will allow the aircraft to capture the specified path at any waypoint with the desired heading and airspeed from an arbitrary set of initial conditions. Five paths were identified and studied. These paths demonstrate the ECG system's ability to save flight time and fuel by more efficiently managing the aircraft's capabilities. Results of this simulation study show that when restrictions on the approach flightpath imposed for manual operation are removed completely, fuel consumption during the approach was reduced by as much as 49% (610 lb fuel) and the time required to fly the flightpath was reduced by as much as 41% (5 min). Savings due to ECG were produced by: (1) shortening the total flight time; (2) keeping the airspeed high as long as possible to minimize time spent flying in a regime in which more engine thrust is required for lift to aid the aerodynamic lift; (3) minimizing time spent flying at constant altitude at slow airspeeds; and (4) synthesizing a path from any location for a direct approach to landing without entering a holding pattern or other fixed approach path

    Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications

    Get PDF
    Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million

    Experimental and theoretical low speed aerodynamic characteristics of the NACA 65 sub 1-213, alpha equals 0.50, airfoil

    Get PDF
    Low-speed wind-tunnel tests have been conducted to determine the two-dimensional aerodynamic characteristics of the NACA 65 sub 1-213, a = 0.05, airfoil. The results were compared with data from another low-speed wind tunnel and also with theoretical predictions obtained by using a viscous subsonic method. The tests were conducted over a Mach number range from 0.10 to 0.36. Reynolds numbers based on the airfoil chord varied from about 3 million to 23 million

    Low-speed aerodynamic characteristics of a 17-percent-thick medium speed airfoil designed for general aviation applications

    Get PDF
    Wind tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17 percent thick medium speed airfoil (MS(1)-0317) designed for general aviation applications. The results were compared with data for the 17 percent thick low speed airfoil (LS(1)-0417) and the 13 percent thick medium speed airfoil (MS(1)-0313). Theoretical predictions of the drag rise characteristics of this airfoil are also provided. The tests were conducted in the Langley low turbulence pressure tunnel over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2 million to 12 million, and an angle of attack range from about -8 to 20 deg
    • …
    corecore