40 research outputs found

    A risk-aware architecture for resilient spacecraft operations

    Get PDF
    In this paper we discuss a resilient, risk-aware software architecture for onboard, real-time autonomous operations that is intended to robustly handle uncertainty in space-craft behavior within hazardous and unconstrained environments, without unnecessarily increasing complexity. This architecture, the Resilient Spacecraft Executive (RSE), serves three main functions: (1) adapting to component failures to allow graceful degradation, (2) accommodating environments, science observations, and spacecraft capabilities that are not fully known in advance, and (3) making risk-aware decisions without waiting for slow ground-based reactions. This RSE is made up of four main parts: deliberative, habitual, and reflexive layers, and a state estimator that interfaces with all three. We use a risk-aware goal-directed executive within the deliberative layer to perform risk-informed planning, to satisfy the mission goals (specified by mission control) within the specified priorities and constraints. Other state-of-the-art algorithms to be integrated into the RSE include correct-by-construction control synthesis and model-based estimation and diagnosis. We demonstrate the feasibility of the architecture in a simple implementation of the RSE for a simulated Mars rover scenario

    A Comparison of Stimulus Set Size on Tact Training for Children with Autism Spectrum Disorder

    Get PDF
    Previous studies on skill acquisition have taught targets in stimulus sets composed of different numbers of stimuli. Although the rationale for selection of a stimulus set size is not clear, the number of target stimuli trained within a set is a treatment decision for which there is limited empirical support. The current investigation compared the efficiency of tact training in 4 stimulus set sizes, each of which included 12 stimuli grouped into (a) 4 sets of 3 stimuli, (b) 3 sets of 4 stimuli, (c) 2 sets of 6 stimuli, and (d) 1 set of 12 stimuli. Results of all 4 participants with autism spectrum disorder show tact training with larger (i.e., 6 and 12) stimulus set sizes was more efficient than training with smaller (i.e., 3 and 4) stimulus set sizes

    Comparing Skill Acquisition Under Varying Onsets of Differential Reinforcement: A Preliminary Analysis

    Get PDF
    The purpose of the current study was to evaluate the effect of implementing differential reinforcement at different times relative to the onset of teaching new skills to learners with autism spectrum disorder. Specifically, we first determined the most efficient differential reinforcement arrangement for each participant. Using the most efficient arrangement, we evaluated if differential reinforcement from the immediate onset, early onset, or late onset is the most efficient for learners to acquire a new skill. Three children diagnosed with autism spectrum disorder who have a history of receiving intervention based on the principles of applied behavior analysis participated in this study. The immediate onset of differential reinforcement resulted in the most efficient instruction in 6 of 7 comparisons. The results are discussed in light of previous studies and suggestions for future research are provided

    From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management

    Get PDF
    Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions

    Multicenter evaluation of the clinical utility of laparoscopy-assisted ERCP in patients with Roux-en-Y gastric bypass

    Get PDF
    Background and Aims The obesity epidemic has led to increased use of Roux-en-Y gastric bypass (RYGB). These patients have an increased incidence of pancreaticobiliary diseases yet standard ERCP is not possible due to surgically altered gastroduodenal anatomy. Laparoscopic-ERCP (LA-ERCP) has been proposed as an option but supporting data are derived from single center small case-series. Therefore, we conducted a large multicenter study to evaluate the feasibility, safety, and outcomes of LA-ERCP. Methods This is retrospective cohort study of adult patients with RYGB who underwent LA-ERCP in 34 centers. Data on demographics, indications, procedure success, and adverse events were collected. Procedure success was defined when all of the following were achieved: reaching the papilla, cannulating the desired duct and providing endoscopic therapy as clinically indicated. Results A total of 579 patients (median age 51, 84% women) were included. Indication for LA-ERCP was biliary in 89%, pancreatic in 8%, and both in 3%. Procedure success was achieved in 98%. Median total procedure time was 152 minutes (IQR 109-210) with median ERCP time 40 minutes (IQR 28-56). Median hospital stay was 2 days (IQR 1-3). Adverse events were 18% (laparoscopy-related 10%, ERCP-related 7%, both 1%) with the clear majority (92%) classified as mild/moderate whereas 8% were severe and 1 death occurred. Conclusion Our large multicenter study indicates that LA-ERCP in patients with RYGB is feasible with a high procedure success rate comparable with that of standard ERCP in patients with normal anatomy. ERCP-related adverse events rate is comparable with conventional ERCP, but the overall adverse event rate was higher due to the added laparoscopy-related events

    Towards architecture-wide analysis, verification, and validation for total system stability during goal-seeking space robotics operations

    No full text
    In this paper we discuss the beginnings of an attempt to define and analyze the stability of an entire modular robotic system architecture - one which includes a three-tier (3T) layer breakdown of capabilities, with symbolic, deterministic planning at the highest level. We approach the problem from the standpoint of a control theory outlook, and try to formalize the issues that result from trying to quantitatively characterize the overall performance of a well-defined system without a need for exhaustive testing. We start by discussing the concept of bounded-input bounded-output stability, giving examples where the technique might not be sufficient to guarantee what we term “total system stability” due to complications associated with the levels of abstraction between the modules and components that are being chained together in the architecture. We then go on to discuss necessary conditions that may fall out of this naturally as a result. We further try to better-define the input and output constraints needed to guarantee total system stability, using an assumption-guarantee-like contractual framework that sits alongside the architecture; the requirements then may have influence across multiple modules, in order to keep consistency. We also discuss how the structure of the architectural modules may help or hinder the process of capability characterization and performance analysis of each module and a given architecture configuration as a whole. We then discuss two overlapping methods that, combined, should allow us to analyze the effectiveness of the architecture, and help towards verification and validation of both the components and the system as a whole. Demonstrative examples are given using a specific architectural implementation called the Resilient Spacecraft Executive. In future work, we hope to define both necessary and sufficient conditions for total system stability across such a system architecture for robotics use.QC 20170216</p

    Risk-aware Planning in Hybrid Domains: An Application to Autonomous Planetary Rovers

    No full text
    Expanding robotic space exploration beyond the immediate vicinity of Earth's orbit can only be achieved by increasingly autonomous agents, given the sometimes insurmountable challenges of teleoperation over great distances. Among the numerous requirements that a fully autonomous robotic space explorer must meet, here we focus on three key mission-enabling technologies: the ability to act under uncertainty and adapt to its environment; the ability to optimize performance while offering hard bounds on the risk of mission failure; and the ability to handle complex hybrid (discrete and continuous) mission planning problems in a provably correct and scalable fashion. In this paper, we show how CLARK, a planner capable of generating risk-bounded, dynamic temporal plans for autonomous agents operating under uncertainty, is able to efficiently generate temporal plans for a challenging planetary rover scenario featuring temporal uncertainty that could not be addressed by previous methods
    corecore