47 research outputs found

    Analysis of Allogenicity of Mesenchymal Stem Cells in Engraftment and Wound Healing in Mice

    Get PDF
    Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced engraftment. In this study, we compared allo-BM-MSCs with syngeneic BM-MSCs or allo-fibroblasts in engraftment and effect in wound healing. Equal numbers of GFP-expressing allo-BM-MSCs, syngeneic BM-MSCs or allo-fibroblasts were implanted into excisional wounds in GFP-negative mice. Quantification of GFP-expressing cells in wounds at 7, 14 and 28 days indicated similar amounts of allogeneic or syngeneic BM-MSCs but significantly reduced amounts of allo-fibroblasts. With healing progression, decreasing amounts of allogeneic and syngeneic BM-MSCs were found in the wound; however, the reduction was more evident (2 fold) in allo-fibroblasts. Similar effects in enhancing wound closure were found in allogeneic and syngeneic BM-MSCs but not in allo-fibroblasts. Histological analysis showed that allo-fibroblasts were largely confined to the injection sites while allo-BM-MSCs had migrated into the entire wound. Quantification of inflammatory cells in wounds showed that allo-fibroblast- but not allo-BM-MSC-treated wounds had significantly increased CD45+ leukocytes, CD3+ lymphocytes and CD8+ T cells. Our study suggests that allogeneic BM-MSCs exhibit ignorable immunogenicity and are equally efficient as syngeneic BM-MSCs in engraftment and in enhancing wound healing

    Heat, athletes, and immunity

    No full text
    During exercise, body temperature rises as a result of increased energy metabolism and heat absorbed from the environment. In response to this rise in body temperature, blood flow increases and stress hormones are released. Together, blood flow and stress hormones stimulate increases in the number of circulating leukocytes and alterations in various aspects of immune function, including cytokine production. The extent of changes in leukocyte numbers, cytokine concentrations, and immune cell function depends on how high body temperature rises and the intensity and duration of exercise. In general, increases in body temperature of ≤1.8°F (1° C) induce mild changes in immune function, and such changes are unlikely to increase the risk of illness in athletes, firefighters, and military personnel who regularly exercise in hot conditions. More severe immune disturbances during exercise in extreme heat (≥106°F or 41° C) may contribute to classical symptoms of heatstroke

    The effects of cold exposure on leukocytes, hormones and cytokines during acute exercise in humans

    No full text
    The purpose of the study was to examine the effects of exercise on total leukocyte count and subsets, as well as hormone and cytokine responses in a thermoneutral and cold environment, with and without an individualized pre-cooling protocol inducing low-intensity shivering. Nine healthy young men participated in six experimental trials wearing shorts and t-shirts. Participants exercised for 60 min on a treadmill at low (LOW: 50% of peak VO2) and moderate (MOD: 70% VO2peak) exercise intensities in a climatic chamber set at 22°C (NT), and in 0°C (COLD) with and without a pre-exercise low-intensity shivering protocol (SHIV). Core and skin temperature, heart rate and oxygen consumption were collected continuously. Blood samples were collected before and at the end of exercise to assess endocrine and immunological changes. Core temperature in NT was greater than COLD and SHIV by 0.4±0.2°C whereas skin temperature in NT was also greater than COLD and SHIV by 8.5±1.4°C and 9.3±2.5°C respectively in MOD. Total testosterone, adenocorticotropin and cortisol were greater in NT vs. COLD and SHIV in MOD. Norepinephrine was greater in NT vs. other conditions across intensities. Interleukin-2, IL-5, IL-7, IL-10, IL-17, IFN-γ, Rantes, Eotaxin, IP-10, MIP-1β, MCP-1, VEGF, PDGF, and G-CSF were elevated in NT vs. COLD and/or SHIV. Furthermore, IFN-γ, MIP-1β, MCP-1, IL-10, VEGF, and PDGF demonstrate greater concentrations in SHIV vs. COLD, mainly in the MOD condition. This study demonstrated that exercising in the cold can diminish the exercise-induced systemic inflammatory response seen in a thermoneutral environment. Nonetheless, prolonged cooling inducing shivering thermogenesis prior to exercise, may induce an immuno-stimulatory response following moderate intensity exercise. Performing exercise in cold environments can be a useful strategy in partially inhibiting the acute systemic inflammatory response from exercise but oppositely, additional body cooling may reverse this benefit.peerReviewe
    corecore